Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 26, issue 10
Ann. Geophys., 26, 3025–3031, 2008
https://doi.org/10.5194/angeo-26-3025-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: SOHO 20 – Transient events on the Sun and in the...

Ann. Geophys., 26, 3025–3031, 2008
https://doi.org/10.5194/angeo-26-3025-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  15 Oct 2008

15 Oct 2008

Causal relationships between eruptive prominences and coronal mass ejections

B. Filippov1 and S. Koutchmy2 B. Filippov and S. Koutchmy
  • 1Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN), Troitsk Moscow Region, Russia
  • 2Institut d'Astrophysique de Paris, CNRS and Univ. P.& M. Curie, Paris, France

Abstract. A close association between eruptive prominences and CMEs, both slow and fast CMEs, was reported in many studies. Sometimes it was possible to follow the material motion starting from the prominence (filament) activation to the CME in the high corona. Remnants of the prominence were found in the bright core of the CME. However, detailed comparisons of the two phenomena reveal problems in explaining CMEs as a continuation of filament eruptions in the upper corona. For example, the heliolatitudes of the disappeared filaments and subsequent coronal ejections sometimes differ by tens of degrees. In order to clear up the problems appearing when considering this association EP-CME, we tentatively analyse the more general question of the dynamics of the generic magnetic flux rope. Prominences and filaments are the best tracers of the flux ropes in the corona long before the beginning of the eruption. A twisted flux rope is held by the tension of field lines of photospheric sources until parameters of the system reach critical values and a catastrophe happens. We suggest that the associated flux rope height above the photosphere is one of these parameters and that it is revealed by the measured height of the filament. 80 filaments were analysed and we found that eruptive prominences were near the so-called limit of stability a few days before their eruptions. We suggest that a comparison of actual heights of prominences with the calculated critical heights from magnetograms could be systematically used to predict filament eruptions and the corresponding CMEs.

Publications Copernicus
Download
Citation