Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 26, issue 10
Ann. Geophys., 26, 2991–2997, 2008
https://doi.org/10.5194/angeo-26-2991-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: SOHO 20 – Transient events on the Sun and in the...

Ann. Geophys., 26, 2991–2997, 2008
https://doi.org/10.5194/angeo-26-2991-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  15 Oct 2008

15 Oct 2008

Sizes of flaring kernels in various parts of the Hα line profile

K. Radziszewski and P. Rudawy K. Radziszewski and P. Rudawy
  • Astronomical Institute of University of Wrocław, 51-622 Wrocław, ul. Kopernika 11, Poland

Abstract. In this paper we present new results of spectra-photometrical investigations of the flaring kernels' sizes and their intensities measured simultaneously in various parts of the Hα line profile. Our investigations were based on the very high temporal resolution spectral-imaging observations of the solar flares collected with Large Coronagraph (LC), Multi-channel Subtractive Double Pass Spectrograph and Solar Eclipse Coronal Imaging System (MSDP-SECIS) at Białkow Observatory (University of Wrocław, Poland).

We have found that the areas of the investigated individual flaring kernels vary in time and in wavelengths, as well as the intensities and areas of the Hα flaring kernels decreased systematically when observed in consecutive wavelengths toward the wings of the Hα line. Our result could be explained as an effect of the cone-shaped lower parts of the magnetic loops channeling high energy particle beams exciting chromospheric plasma.

Publications Copernicus
Download
Citation