Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 26, issue 8
Ann. Geophys., 26, 2265–2271, 2008
https://doi.org/10.5194/angeo-26-2265-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 13th International EISCAT Workshop

Ann. Geophys., 26, 2265–2271, 2008
https://doi.org/10.5194/angeo-26-2265-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  05 Aug 2008

05 Aug 2008

On initial enhancement of mesospheric dust associated plasma irregularities subsequent to radiowave heating

W. A. Scales and C. Chen W. A. Scales and C. Chen
  • The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061-0111, USA

Abstract. Important observational manifestations of subvisible mesospheric dust are Polar Mesospheric Summer Echoes PMSE which are produced by scattering from electron irregularities produced by dust charging. It has been observed that the PMSE strength can be artificially modified by using a ground-based ionospheric heating facility to perturb the electron irregularity source region that is believed to produce PMSE. Recently it has become evident that significant diagnostic information may be available about the dust layer from the temporal behavior of the electron irregularities during the heating process which modifies the background electron temperature. Particularly interesting and important periods of the temporal behavior are during the turn-on and turn-off of the radiowave heating. Although a number of past theoretical and experimental investigations have considered the turn-off period, the objective here is to consider futher possibilities for diagnostic information available as well as the underlying physical processes. Approximate analytical models are developed and compared to a more accurate full computational model as a reference. Then from the temporal behavior of the electron irregularities during the turn-off of the radiowave heating, the analytical models are used to obtain possible diagnostic information for various charged dust and background plasma quantities.

Publications Copernicus
Download
Citation