Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 26, issue 7
Ann. Geophys., 26, 1955–1963, 2008
https://doi.org/10.5194/angeo-26-1955-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 26, 1955–1963, 2008
https://doi.org/10.5194/angeo-26-1955-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  18 Jul 2008

18 Jul 2008

Eastward sub-auroral ion drifts or ASAID

M. Voiculescu1 and M. Roth2 M. Voiculescu and M. Roth
  • 1Department of Physics, Faculty of Sciences, University "Dunărea de Jos" Galati, Romania
  • 2Belgian Institute for Space Aeronomy, Brussels, Belgium

Abstract. From satellite data sampling the top ionosphere in the Northern Hemisphere we have identified strong eastward ion drifts, with speeds larger than 1 km/s, widths of 1°–2°, occurring at similar temporal and spatial locations as rapid westward ion drifts known as sub-auroral ion drifts (SAID). We have called these events "abnormal sub-auroral ion drifts" (ASAID). Two events observed in the 20:00–22:00 MLT interval are discussed: the first occurring on 21 September 2003 and the other on 12 October 2003. Tomographic reconstructions of the electron density in the F-region, based on satellite data, provided by the Scandinavian tomography chain, were also available. We have observed that ASAID are accompanied by upward flows with a speed of the same order as that of the zonal ion drift. They coincide with deep, narrow troughs in the total ion density, both at the altitude of the F15 DMSP satellite (850 km) and in the F-region of the ionosphere, but do not seem to be a feature of the convective transport. During the entire duration of ASAID the electron temperature is very high while, contrary to SAID, the ion temperature has no clear variation. Both events described in this paper end up turning into classical SAID. Satellite data indicate that the generator of ASAID could be located inside the plasmasphere close to the plasmapause and we suggest a possible mechanism for their formation.

Publications Copernicus
Download
Citation