Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 26, issue 7
Ann. Geophys., 26, 1889–1895, 2008
https://doi.org/10.5194/angeo-26-1889-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 26, 1889–1895, 2008
https://doi.org/10.5194/angeo-26-1889-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  14 Jul 2008

14 Jul 2008

Are there current-sheet-like structures in the Earth's magnetotail as in the solar wind – results and implications from high time resolution magnetic field measurements by Cluster

G. Li, E. Lee, and G. Parks G. Li et al.
  • Space Sciences Laboratory, University of California at Berkeley, CA 94720, USA

Abstract. Recent studies of solar wind MHD turbulence show that current-sheet-like structures are common in the solar wind and they are a significant source of solar wind MHD turbulence intermittency. While numerical simulations have suggested that such structures can arise from non-linear interactions of MHD turbulence, a recent study by Borovsky (2006), upon analyzing one year worth of ACE data, suggests that these structures may represent the magnetic walls of flux tubes that separate solar wind plasma into distinct bundles and these flux tubes are relic structures originating from boundaries of supergranules on the surface of the Sun. In this work, we examine whether there are such structures in the Earth's magnetotail, an environment vastly different from the solar wind. We use high time resolution magnetic field data of the FGM instrument onboard Cluster C1 spacecraft. The orbits of Cluster traverse through both the solar wind and the Earth's magnetosheath and magnetotail. This makes its dataset ideal for studying differences between solar wind MHD turbulence and that inside the Earth's magnetosphere. For comparison, we also perform the same analysis when Cluster C1 is in the solar wind. Using a data analysis procedure first introduced in Li (2007, 2008), we find that current-sheet-like structures can be clearly identified in the solar wind. However, similar structures do not exist inside the Earth's magnetotail. This result can be naturally explained if these structures have a solar origin as proposed by Borovsky (2006). With such a scenario, current analysis of solar wind MHD turbulence needs to be improved to include the effects due to these curent-sheet-like structures.

Publications Copernicus
Download
Citation