Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 26, issue 6
Ann. Geophys., 26, 1365–1377, 2008
https://doi.org/10.5194/angeo-26-1365-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 26, 1365–1377, 2008
https://doi.org/10.5194/angeo-26-1365-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  11 Jun 2008

11 Jun 2008

Estimation of the effect of long-range transport on seasonal variation of aerosols over northeastern India

M. M. Gogoi1, P. K. Bhuyan2, and K. Krishna Moorthy1 M. M. Gogoi et al.
  • 1SPL, VSSC, Trivandrum 695 022 India
  • 2Department of Physics, Dibrugarh University, Dibrugarh 786 004 India

Abstract. Spectral aerosol optical depth (AOD) at ten discrete channels in the visible and near IR regions were estimated over Dibrugarh, located in the northeastern part of India, using a ground-based multi-wavelength solar radiometer (MWR) from October 2001 to February 2006. The observations reveal seasonal variations with low values of AODs in retreating monsoon and high values in the pre-monsoon season. Generally the AODs are high at shorter wavelengths and low at longer wavelengths. AOD spectra are relatively steep in winter compared to that in the monsoon period. The average value of AOD lies between 0.44±0.07 and 0.56±0.07 at 500 nm during the pre-monsoon season and between 0.19±0.02 and 0.22±0.02 during re-treating monsoon at the same wavelength. Comparison of MWR observation on Dibrugarh with satellite (MODIS) observation indicates a good correspondence between ground-based and satellite derived AODs. The synoptic wind pattern obtained from National Centre for Medium Range Weather Forecasting (NCMRWF), India and back trajectory analysis using the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4) Model indicates that maximum contribution to aerosol extinction could be due to transport of pollutants from the industrialized and urban regions of India and large amounts of desert and mineral aerosols from the west Asian and Indian desert. Equal contributions from Bay-of-Bengal (BoB), in addition to that from the Indian landmass and west Asian desert leads to a further increase of AOD over the region of interest in the pre-monsoon seasons.

Publications Copernicus
Download
Citation