Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 26, issue 5
Ann. Geophys., 26, 1181–1187, 2008
https://doi.org/10.5194/angeo-26-1181-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The fourth IAGA-ICMA-CAWSES Workshop "Long-Term Changes and...

Ann. Geophys., 26, 1181–1187, 2008
https://doi.org/10.5194/angeo-26-1181-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  28 May 2008

28 May 2008

Global change induced trends in ion composition of the troposphere to the lower thermosphere

G. Beig G. Beig
  • Indian Institute of tropical Meteorology, Pashan, Pune-411008, India

Abstract. In this paper a brief overview of the changes in atmospheric ion compositions driven by the human-induced changes in related neutral species, and temperature from the troposphere to lower thermosphere has been made. It is found that ionic compositions undergo significant variations. The variations calculated for the double-CO2 scenario are both long-term and permanent in nature. Major neutrals which take part in the lower and middle atmospheric ion chemical schemes and undergo significant changes due to anthropogenic activities are: O, O2, H2O, NO, acetonitrile, pyridinated compounds, acetone and aerosol. The concentration of positive ion/electron density does not change appreciably in the middle atmosphere but indicates a marginal decrease above about 75 km until about 85 km, above which the magnitude of negative trend decreases and becomes negligible at 93 km. Acetonitrile cluster ions in the upper stratosphere are likely to increase, whereas NO+ and NO+(H2O) in the mesosphere and lower thermosphere (MLT) region are expected to decrease for the double CO2 scenario. It is also found that the atmospheric density of pyridinated cluster ions is fast rising in the troposphere.

Publications Copernicus
Download
Citation