Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.490
IF 5-year value: 1.445
IF 5-year
CiteScore value: 2.9
SNIP value: 0.789
IPP value: 1.48
SJR value: 0.74
Scimago H <br class='widget-line-break'>index value: 88
Scimago H
h5-index value: 21
Volume 25, issue 4
Ann. Geophys., 25, 855–861, 2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 25, 855–861, 2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.

  08 May 2007

08 May 2007

On the seasonal variations of the threshold height for the occurrence of equatorial spread F during solar minimum and maximum years

G. Manju, C. V. Devasia, and R. Sridharan G. Manju et al.
  • Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum – 695 022, Kerala, India

Abstract. A study has been carried out on the occurrence of bottom side equatorial spread F (ESF) and its dependence on the polarity and magnitude of the thermospheric meridional wind just prior to ESF occurrence during summer, winter and equinox seasons of solar maximum (2002) and minimum years (1995), using ionosonde data of Trivandrum (8.5° N, 76.5° E, dip=0.5° N) and SHAR (13.7° N, 80.2° E, dip ~5.5° N) in the Indian longitude sector. In this study, we have examined the changes in the threshold height of the base of the F layer for the triggering of ESF, irrespective of the magnitude and polarity of the meridional winds during the above periods. The study indicates that the threshold height above which ESF triggering is entirely controlled only by the collisional R-T instability is least for summer months, with higher values for winter and equinox, during the solar minimum period, whereas for the solar maximum period the threshold height is least for winter, with higher values for summer and equinox. But the range over which the threshold height varies is very narrow (<15 km) for solar minimum in relation to the large range of variation (>50 km) in the solar maximum epoch. Further to this, the study also reveals a clear-cut increase in threshold height with solar activity for all seasons. Clear-cut seasonal variability is also observed in the threshold height, especially for solar maximum. The study quantifies the level of the base of the F layer below which neutral dynamical effects play a decisive role in the triggering of ESF during different seasons and solar epochs.

Publications Copernicus