Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 24, issue 3
Ann. Geophys., 24, 887–900, 2006
https://doi.org/10.5194/angeo-24-887-2006
© Author(s) 2006. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 24, 887–900, 2006
https://doi.org/10.5194/angeo-24-887-2006
© Author(s) 2006. This work is distributed under
the Creative Commons Attribution 3.0 License.

  19 May 2006

19 May 2006

IMF effect on sporadic-E layers at two northern polar cap sites: Part I – Statistical study

M. Voiculescu2,1, A. T. Aikio2, T. Nygrén2, and J. M. Ruohoniemi3 M. Voiculescu et al.
  • 1Department of Physics, Faculty of Sciences, University “Dunărea de Jos" Galati, 800008 Galati, Romania
  • 2Department of Physical Sciences, University of Oulu, P.O. Box 3000, FIN-90014, Finland
  • 3Applied Physics Laboratory, The Johns Hopkins University Applied Physics Laboratory, Laurel MD, 20723, USA

Abstract. In this paper we investigate the relationship between polar cap sporadic-E layers and the direction of the interplanetary magnetic field (IMF) using a 2-year database from Longyearbyen (75.2 CGM Lat, Svalbard) and Thule (85.4 CGM Lat, Greenland). It is found that the MLT distributions of sporadic-E occurrence are different at the two stations, but both are related to the IMF orientation. This relationship, however, changes from the centre of the polar cap to its border. Layers are more frequent during positive By at both stations. This effect is particularly strong in the central polar cap at Thule, where a weak effect associated with Bz is also observed, with positive Bz correlating with a higher occurrence of Es. Close to the polar cap boundary, at Longyearbyen, the By effect is weaker than at Thule. On the other hand, Bz plays there an equally important role as By, with negative Bz correlating with the Es occurrence. Since Es layers can be created by electric fields at high latitudes, a possible explanation for the observations is that the layers are produced by the polar cap electric field controlled by the IMF. Using electric field estimates calculated by means of the statistical APL convection model from IMF observations, we find that the diurnal distributions of sporadic-E occurrence can generally be explained in terms of the electric field mechanism. However, other factors must be considered to explain why more layers occur during positive than during negative By and why the Bz dependence of layer occurrence in the central polar cap is different from that at the polar cap boundary.

Publications Copernicus
Download
Citation