Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 24, issue 3
Ann. Geophys., 24, 873–885, 2006
https://doi.org/10.5194/angeo-24-873-2006
© Author(s) 2006. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 24, 873–885, 2006
https://doi.org/10.5194/angeo-24-873-2006
© Author(s) 2006. This work is distributed under
the Creative Commons Attribution 3.0 License.

  19 May 2006

19 May 2006

STARE velocity at large flow angles: is it related to the ion acoustic speed?

M. V. Uspensky1, A. V. Koustov2, and S. Nozawa3 M. V. Uspensky et al.
  • 1Finnish Meteorological Institute, Erik Palminin Aukio 1, P.O. Box 503, Helsinki FIN-00101, Finland
  • 2Institute of Space and Atmospheric Studies, University of Saskatchewan, 116 Science Place, Saskatoon, S7N 5E2, Canada
  • 3Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

Abstract. The electron drift and ion-acoustic speed in the E region inferred from EISCAT measurements are compared with concurrent STARE radar velocity data to investigate a recent hypothesis by Bahcivan et al. (2005), that the electrojet irregularity velocity at large flow angles is simply the product of the ion-acoustic speed and the cosine of an angle between the electron flow and the irregularity propagation direction. About 3000 measurements for flow angles of 50°–70° and electron drifts of 400–1500 m/s are considered. It is shown that the correlation coefficient and the slope of the best linear fit line between the predicted STARE velocity (based solely on EISCAT data and the hypothesis of Bahcivan et al. (2005)) and the measured one are both of the order of ~0.4. Velocity predictions are somewhat better if one assumes that the irregularity phase velocity is the line-of-sight component of the E×B drift scaled down by a factor ~0.6 due to off-orthogonality of irregularity propagation (nonzero effective aspect angles of STARE observations).

Publications Copernicus
Download
Citation