Articles | Volume 24, issue 1
https://doi.org/10.5194/angeo-24-355-2006
https://doi.org/10.5194/angeo-24-355-2006
07 Mar 2006
 | 07 Mar 2006

Sub-keV ring current ions as the tracer of substorm injection

M. Yamauchi and R. Lundin

Abstract. The dynamics of the energy-latitude dispersed sub-keV trapped ions inside the ring current region, the so-called wedge-like dispersions structure, were statistically studied using Viking satellite data. Probabilities with/without these signatures at various local times in the dayside are obtained in terms of different time-lags from the substorm activity monitored by the AE index. The structure appears in the early morning sector within a few hours after the substorm, and it slowly propagates eastward while decaying with a time scale of several hours. The result qualitatively confirmed the previous model that the wedge-like dispersions are originated from past substorm-related plasma injections into the nightside ring current region, and that the dispersion is formed when these injected plasma slowly moves eastward to the dayside by the drift motion (E×B (eastward), grad-<|B| (westward), and curvature (westward) drifts). However, the appearance of the structure is twice or three times faster than the model prediction, and some structure reaches even to the evening sector. The results indicate that the start location of the drift is not as far as midnight and that the drift speed is slightly faster than the model prediction. The former means that the substorm-related increase of hot plasma in the ring current region shifts or extends to the early morning sector for large substorms, and the latter means that the substantial electric field driving the sub-keV ion drift is slightly different from the model field. We also detected the evacuating effect starting right after the substorm (or storm) onset. The electric field imposed in the dayside magnetosphere seems to remove the remainder of trapped ions.