Ionospheric long-term trends: can the geomagnetic control and the greenhouse hypotheses be reconciled?
Abstract. The ionospheric F2-layer parameter long-term trends are considered from the geomagnetic control concept and the greenhouse hypothesis points of view. It is stressed that long-term geomagnetic activity variations are crucial for ionosphere long-term trends, as they determine the basic natural pattern of foF2 and hmF2 long-term variations. The geomagnetic activity effects should be removed from the analyzed data to obtain real trends in ionospheric parameters, but this is not usually done. Only a thermosphere cooling, which is accepted as an explanation for the neutral density decrease, cannot be reconciled with negative foF2 trends revealed for the same period. A more pronounced decrease of the O/N2 ratio is required which is not provided by empirical thermospheric models. Thermospheric cooling practically cannot be seen in foF2 trends, due to a weak NmF2 dependence on neutral temperature; therefore, foF2 trends are mainly controlled by geomagnetic activity long-term variations. Long-term hmF2 variations are also controlled by geomagnetic activity variations, as both parameters, NmF2 and hmF2 are related by the F2-layer formation mechanism. But hmF2 is very sensitive to neutral temperature changes, so strongly damped hmF2 long-term variations observed at Slough after 1972 may be considered as a direct manifestation of the thermosphere cooling. Earlier revealed negative hmF2 trends in western Europe, where magnetic declination D<0 and positive trends at the eastern stations (D>0), can be related to westward thermospheric wind whose role has been enhanced due to a competition between the thermosphere cooling (CO2 increase) and its heating under increasing geomagnetic activity after the end of the 1960s.