Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.490
IF 5-year value: 1.445
IF 5-year
CiteScore value: 2.9
SNIP value: 0.789
IPP value: 1.48
SJR value: 0.74
Scimago H <br class='widget-line-break'>index value: 88
Scimago H
h5-index value: 21
Volume 23, issue 1
Ann. Geophys., 23, 55–74, 2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Eleventh International EISCAT Workshop

Ann. Geophys., 23, 55–74, 2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

  31 Jan 2005

31 Jan 2005

An interferometer experiment to explore the aspect angle dependence of stimulated electromagnetic emission spectra

Isham1, Hagfors2, Khudukon3, Yu. Yurik3, Tereshchenko3, Rietveld4, Belyey5, Grill6, La Hoz5, Brekke5, and Heinselman7 Isham et al.
  • 1Interamerican University, Bayamón, Puerto Rico, USA
  • 2Max-Planck Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany
  • 3Polar Geophysical Institute, Murmansk, Russia
  • 4EISCAT Scientific Association, Ramfjordbotn, Norway
  • 5University of Tromsø, Tromsø, Norway
  • 6Lancaster University, Lancaster, UK
  • 7SRI International, Menlo Park, California, USA

Abstract. When the Earth's ionosphere is irradiated by a radiofrequency (RF) electromagnetic wave of sufficiently high power density and tuned to match a natural E- or F-region plasma frequency, ionospheric magnetoionic wave modes may be excited and may generate RF electromagnetic sideband waves via nonlinear interactions. These secondary emissions, which may then escape from the ionosphere, have been termed stimulated electromagnetic emission or SEE. The frequency spectra of this radiation has been studied extensively, and a number of characteristic spectral features have been identified and in some cases related to particular plasma processes. The separation in frequency between the RF pump and the harmonics of the local electron gyrofrequency is critical in determining the amount of anomalous absorption suffered by the pump wave and the spectral properties of the stimulated sidebands. The pump can excite electrostatic waves which do not propagate away but can in some cases be observed via radio-wave scattering from the electron density fluctuations associated with them. These enhanced density fluctuations are created by processes commonly referred to as upper-hybrid and Langmuir turbulence. Langmuir turbulence has been the subject of 930-MHz scattering observations with antenna scanning through several pre-selected angles between the geographic and geomagnetic zenith directions, and a preference for pointing angles between the Spitze angle and geomagnetic field-aligned was identified. Other phenomena, such as the generation of enhanced electron temperatures and artificial aurora, have more recently been shown to have special behavior at similar angles, near but apparently not quite at field-aligned. In view of this evidence for angular structure in several pump-induced effects, in light of the rich variety of SEE phenomena strongly dependent on the geomagnetic field via the frequency interval between the pump and the gyrofrequency harmonics, and in view of the not yet understood but complex relationship between electrostatic fluctuations and SEE, it is of interest to investigate experimentally whether a similar angular structure is present in the various spectral features of the SEE signals and to compare the results with radar and other observations of RF-pump-induced effects. To this end we describe a simple two-element radio interferometer designed to search for aspect angle dependence of SEE features. We present an example of the initial data produced by this system, and draw preliminary conclusions based on the example data.

Publications Copernicus