Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 23, issue 11
Ann. Geophys., 23, 3533–3547, 2005
https://doi.org/10.5194/angeo-23-3533-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 23, 3533–3547, 2005
https://doi.org/10.5194/angeo-23-3533-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

  21 Dec 2005

21 Dec 2005

A new formulation for the ionospheric cross polar cap potential including saturation effects

A. J. Ridley A. J. Ridley
  • University of Michigan, Ann Arbor, Michigan, USA

Abstract. It is known that the ionospheric cross polar cap potential (CPCP) saturates when the interplanetary magnetic field (IMF) Bz becomes very large. Few studies have offered physical explanations as to why the polar cap potential saturates. We present 13 events in which the reconnection electric field (REF) goes above 12mV/m at some time. When these events are examined as typically done in previous studies, all of them show some signs of saturation (i.e., over-prediction of the CPCP based on a linear relationship between the IMF and the CPCP). We show that by taking into account the size of the magnetosphere and the fact that the post-shock magnetic field strength is strongly dependent upon the solar wind Mach number, we can better specify the ionospheric CPCP. The CPCP (Φ) can be expressed as Φ=(10-4v2+11.7B(1-e-Ma/3)sin3(θ/2)) {rms/9 (where v is the solar wind velocity, B is the combined Y and Z components of the interplanetary magnetic field, Ma is the solar wind Mach number, θ=acos(Bz/B), and rms is the stand-off distance to the magnetopause, assuming pressure-balance between the solar wind and the magnetosphere). This is a simple modification of the original Boyle et al. (1997) formulation.

Publications Copernicus
Download
Citation