Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 23, issue 9
Ann. Geophys., 23, 3149–3161, 2005
https://doi.org/10.5194/angeo-23-3149-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 1st European Space Weather Week (ESWW)

Ann. Geophys., 23, 3149–3161, 2005
https://doi.org/10.5194/angeo-23-3149-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

  22 Nov 2005

22 Nov 2005

Solar weather monitoring

J.-F. Hochedez, A. Zhukov, E. Robbrecht, R. Van der Linden, D. Berghmans, P. Vanlommel, A. Theissen, and F. Clette J.-F. Hochedez et al.
  • Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels, Belgium

Abstract. Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs), flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC) at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP) events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

Publications Copernicus
Download
Citation