Articles | Volume 23, issue 5
27 Jul 2005
 | 27 Jul 2005

Zonal wave numbers 1-5 in planetary waves from the TOMS total ozone at 65° S

A. Grytsai, Z. Grytsai, A. Evtushevsky, G. Milinevsky, and N. Leonov

Abstract. Planetary waves in the total ozone at the southern latitude of 65° S are studied to obtain the main characteristics of the zonal wave numbers 1–5. The TOMS total ozone data were used to analyze the amplitude and periodicity variations of the five spectral components during August-December of 1979–2003. A presence of the shorter period of waves 1–3 in 1996 (7 days) in comparison with 2002 (8–12 days) is revealed which can be attributed to the distinction in conditions of typical and anomalously weak stratospheric polar vortex, probably, a strong and weak mean zonal wind. The interannual variations of the monthly and 5-month mean amplitudes of the zonal wave numbers 1–5 are described. Wave 1 has the largest amplitude in October (up to 139 DU in 2000) and increasing amplitude trend (15 DU/decade for October 1979–2003). The 5-month mean amplitudes averaged over 1979–2003 are 53.6, 29.9, 15.5, 10.5, and 7.8 DU for the wave number sequence 1, 2, 3, 4 and 5, respectively. For the stationary components the amplitudes are 38.3, 4.8, 1.8, 1.2, 0.7 DU, respectively. Thus, the stationary component of wave 1 and the traveling one of waves 2–5 are predominant. The tendencies in a long-term change in the wave number amplitude can be explained by taking into account the degree of wave deformation of the stratospheric polar vortex edge, net meridional displacements of the lower stratosphere air, and the difference between the total ozone loss and negative trends in the polar and mid-latitude regions.

Keywords. General circulation – Middle atmosphere dynamics – Waves and tides