Articles | Volume 22, issue 2
https://doi.org/10.5194/angeo-22-603-2004
https://doi.org/10.5194/angeo-22-603-2004
01 Jan 2004
 | 01 Jan 2004

On the cessation of magnetic reconnection

M. Hesse and J. Birn

Abstract. Kinetic simulations of collisionless magnetic reconnection are used to study the effect on the reconnection rate of ion density enhancements in the inflow region. The goal of the investigation is to study a candidate mechanism for the slow-down of magnetic reconnection. The calculations involve either proton or oxygen additions in the inflow region, initially located at two distances from the current sheet. Protons are found to be much more tightly coupled into the evolution of the reconnecting system and, therefore, they effect an immediate slowdown of the reconnection process, as soon as the flux tubes they reside on become involved. Oxygen, on the other hand, has, within the limits of the calculations, a much less pronounced effect on the reconnection electric field. The difference is attributed to the lack of tight coupling to the magnetic field of the oxygen populations. Last, a study of proton and oxygen acceleration finds that protons respond primarily to the reconnection electric field, whereas the main oxygen electric field is achieved by Hall-type electric fields at the plasma sheet boundary.

Key words. Space plasma physics (magnetic reconnection; numerical simulation studies; numerical simulation studies)