GEOTAIL observation of tilted X-line formation during flux transfer events (FTEs) in the dayside magnetospheric boundary layers
Abstract. The magnetic field and plasma structures during two successive crossings of the subsolar magnetospheric boundary layers (i.e. MagnetoPause Current Layer (MPCL) and Low-Latitude Boundary Layer (LLBL)) under the southward-dawnward IMF are examined on the basis of the data obtained by the GEOTAIL spacecraft. A significant and interesting feature is found, that is, Flux Transfer Events (FTEs) occur in association with the formation of the tilted X-line. During the first inbound MPCL/LLBL crossing, the ion velocity enhancement (in particular, the Vl component negatively increases) can be observed in association with simultaneous typical bipolar signature (positive followed by negative) in the Bn component. In addition, a clear D-shaped ion distribution whose origin is the magnetosheath can also be found in the dawnward direction. A few minutes later, the satellite experiences outbound MPCL crossing. The negative enhancement of the Vm component can be found as well as the positive enhancement of the Vl component. Simultaneously, a typical bipolar signature with the polarity (negative followed by positive) opposite that observed in the first encounter can also be observed. The ions from the magnetosheath flow predominantly in the duskward direction, although the D-shaped ion distribution cannot be observed. These results indicate that the satellite initially observes one part of a reconnected flux tube formed by FTEs whose magnetospheric side is anchored to the Southern Hemisphere. The ions confined in this partial flux tube are flowing in the south-dawnward direction. Then, the satellite observes the other part of the reconnected flux tube whose magnetospheric side is anchored to the Northern Hemisphere. The ions confined in this flux tube flow dominantly in the north-duskward direction. Furthermore, it can be considered that the second MPCL crossing is a direct cut through the diffusion region of FTEs because the LLBL is absent in the vicinity of the MPCL. On the basis of these results, it can be concluded that the satellite was passing near the tilted X-line. The information obtained through this study is expected to be of great use in discriminating between the anti-parallel (steady-state) reconnection and tilted X-line models on the dayside MPCL.