Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.490
IF1.490
IF 5-year value: 1.445
IF 5-year
1.445
CiteScore value: 2.9
CiteScore
2.9
SNIP value: 0.789
SNIP0.789
IPP value: 1.48
IPP1.48
SJR value: 0.74
SJR0.74
Scimago H <br class='widget-line-break'>index value: 88
Scimago H
index
88
h5-index value: 21
h5-index21
Volume 22, issue 5
Ann. Geophys., 22, 1513–1528, 2004
https://doi.org/10.5194/angeo-22-1513-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 22, 1513–1528, 2004
https://doi.org/10.5194/angeo-22-1513-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.

  08 Apr 2004

08 Apr 2004

Study of the tidal variations in mesospheric temperature at low and mid latitudes from WINDII and potassium lidar observations

M. Shepherd1 and C. Fricke-Begemann2 M. Shepherd and C. Fricke-Begemann
  • 1Centre for Research in Earth and Space Science, Petrie Sci. Bld., R. 206, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
  • 2Leibniz-Institute of Atmospheric Physics, University of Rostock, Schloss-Str. 6, 18225, Kühlungsborn, Germany

Abstract. Zonal mean daytime temperatures from the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) and nightly temperatures from a potassium (K) lidar are employed in the study of the tidal variations in mesospheric temperature at low and mid latitudes in the Northern Hemisphere. The analysis is applied to observations at 89km height for winter solstice, December to February (DJF), at 55° N, and for May and November at 28° N. The WINDII results are based on observations from 1991 to 1997. The K-lidar observations for DJF at Kühlungsborn (54° N) were from 1996–1999, while those for May and November at Tenerife 28° N were from 1999. To avoid possible effects from year-to-year variability in the temperatures observed, as well as differences due to instrument calibration and observation periods, the mean temperature field is removed from the respective data sets, assuming that only tidal and planetary scale perturbations remain in the temperature residuals. The latter are then binned in 0.5h periods and the individual data sets are fitted in a least-mean square sense to 12-h and 8-h harmonics, to infer semidiurnal and terdiurnal tidal parameters. Both the K-lidar and WINDII independently observed a strong semidiurnal tide in November, with amplitudes of 13K and 7.4K, respectively. Good agreement was also found in the tidal parameters derived from the two data sets for DJF and May. It was recognized that insufficient local time coverage of the two separate data sets could lead to an overestimation of the semidiurnal tidal amplitude. A combined ground-based/satellite data set with full diurnal local time coverage was created which was fitted to 24h+12h+8h harmonics and a novel method applied to account for possible differences between the daytime and nighttime means. The results still yielded a strong semidiurnal tide in November at 28° N with an amplitude of 8.8K which is twice the SD amplitude in May and DJF. The diurnal tidal parameters were practically the same at 28° N and 55° N, in November and DJF, respectively, with an amplitude of 6.5K and peaking at ~9h. The diurnal and semidiurnal amplitudes in May were about the same, 4K, and 4.6K, while the terdiurnal tide had the same amplitudes and phases in May and November at 28° N. Good agreement is found with other experimental data while models tend to underestimate the amplitudes.

Key words. Atmospheric composition and structure (pressure, density and temperature) – Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)

Publications Copernicus
Download
Citation