Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 21, issue 3
Ann. Geophys., 21, 719–728, 2003
https://doi.org/10.5194/angeo-21-719-2003
© Author(s) 2003. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 21, 719–728, 2003
https://doi.org/10.5194/angeo-21-719-2003
© Author(s) 2003. This work is distributed under
the Creative Commons Attribution 3.0 License.

  31 Mar 2003

31 Mar 2003

Rocket-borne investigation of auroral patches in the evening sector during substorm recovery

M. A. Danielides1 and A. Kozlovsky2,1 M. A. Danielides and A. Kozlovsky
  • 1Department of Physical Sciences, P.O. Box 3000, FIN-90014 University of Oulu, Finland
  • 2Sodankylä Geophysical Observatory, FIN-99600 Sodankylä, Finland

Abstract. On 11 February 1997 at 08:36 UT after a substorm onset the Auroral Turbulence 2 sounding rocket was launched from Poker Flat Research Range, Alaska into a moderately active auroral region. This experiment has allowed us to investigate evening (21:00 MLT) auroral forms at the substorm recovery, which were discrete multiple auroral arcs stretched to, the east and southeast from the breakup region, and bright auroral patches propagating westward along the arcs like a luminosity wave, which is a typical feature of the disturbed arc. The rocket crossed an auroral arc of about 40 km width, stretched along southeast direction. Auroral patches and associated electric fields formed a 200 km long periodical structure, which propagated along the arc westward at a velocity of 3 km/s, whereas the ionospheric plasma velocity inside the arc was 300 m/s westward. The spatial periodicity in the rocket data was found from optical ground-based observations, from electric field in situ measurements, as well as from ground-based magnetic observations. The bright patches were co-located with equatorward plasma flow across the arc of the order of 200 m/s in magnitude, whereas the plasma flow tended to be poleward at the intervals between the patches, where the electric field reached the magnitude of up to 20 mV/m, and these maxima were co-located with the peaks in electron precipitations indicated by the electron counter on board the rocket. Pulsations of a 70-s period were observed on the ground in the eastern component of the magnetic field and this is consistent with the moving auroral patches and the north-south plasma flows associated with them. The enhanced patch-associated electric field and fast westward propagation suggest essential differences between evening auroral patches and those occurring in the morning ionosphere. We propose the wave that propagates along the plasma sheet boundary to be a promising mechanism for the evening auroral patches.

Key words. Ionosphere (auroral ionosphere; electric fields and currents)

Publications Copernicus
Download
Citation