50 MHz continuous wave interferometer observations of the unstable mid-latitude E-region ionosphere
Abstract. In this paper we describe the conversion of SESCAT (Sporadic-E SCATter experiment), a bistatic 50 MHz continuous wave (CW) Doppler radar located on the island of Crete, Greece, to a single (east-west) baseline interferometer. The first results show that SESCAT, which provides high quality Doppler spectra and excellent temporal resolution, has its measurement capabilities enhanced significantly when operated as an interferometer, as it can also study short-term dynamics of localized scattering regions within mid-latitude sporadic E-layers. The interferometric observations reveal that the aspect sensitive area viewed by the radar often contains a few zonally located backscatter regions, presumably blobs or patches of unstable metallic ion plasma, which drift across the radar field-of-view with the neutral wind. On average, these active regions of backscatter have mean zonal scales ranging from a few kilometers to several tens of kilometers and drift with westward speeds from ~ 20 m/s to 100 m/s, and occasionally up to 150 m/s. The cross-spectral analysis shows that mid-latitude type 1 echoes occur much more frequently than has been previously assumed and they originate in single and rather localized areas of elevated electric fields. On the other hand, typical bursts of type 2 echoes are often found to result from two adjacent regions in azimuth undergoing the same bulk motion westwards but producing scatter of opposite Doppler polarity, a fact that contradicts the notion of isotropic turbulence to which type 2 echoes are attributed. Finally, quasi-periodic (QP) echoes are observed simply to be due to sequential unstable plasma patches or blobs which traverse across the radar field-of-view, sometimes in a wave-like fashion.
Key words. Ionosphere (ionospheric irregularities; mid-latitude ionosphere; plasma waves and instabilities)