Articles | Volume 19, issue 1
Ann. Geophys., 19, 121–129, 2001
https://doi.org/10.5194/angeo-19-121-2001
Ann. Geophys., 19, 121–129, 2001
https://doi.org/10.5194/angeo-19-121-2001

  31 Jan 2001

31 Jan 2001

Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model

G. Lacorata1, E. Aurell2, and A. Vulpiani3 G. Lacorata et al.
  • 1Dipartimento di Fisica, Università dell’Aquila, Via Vetoio 1, I-67010 Coppito, L’Aquila, Italy, Istituto di Fisica dell’Atmosfera, CNR, Via Fosso del Cavaliere, I-00133 Roma, Italy,
  • and Dipartimento di Fisica, Università di Roma “La Sapienza", Piazzale Aldo Moro 5, I-00185 Roma, Italy
  • 2Department of Mathematics, Stockholm University, S-10691 Stockholm, Sweden
  • 3Istituto Nazionale Fisica della Materia, Unità di Roma 1 and Dipartimento di Fisica, Università di Roma “La Sapienza", Piazzale Aldo Moro 5, I-00185 Roma, Italy
  • Correspondence to: G. Lacorata, (Guglielmo.Lacorata@aquila.infn.it)

Abstract. We analyze characteristics of drifter trajectories from the Adriatic Sea with recently introduced nonlinear dynamics techniques. We discuss how in quasi-enclosed basins, relative dispersion as a function of time, a standard analysis tool in this context, may give a distorted picture of the dynamics. We further show that useful information may be obtained by using two related non-asymptotic indicators, the Finite-Scale Lyapunov Exponent (FSLE) and the Lagrangian Structure Function (LSF), which both describe intrinsic physical properties at a given scale. We introduce a simple chaotic model for drifter motion in this system, and show by comparison with the model that Lagrangian dispersion is mainly driven by advection at sub-basin scales until saturation sets in.

Key words. Oceanography: General (marginal and semi-closed seas) – Oceanography: Physical (turbulence, diffusion, and mixing processes; upper ocean processes)