Articles | Volume 18, issue 9
Ann. Geophys., 18, 1027–1042, 2000

Special issue: IXe EISCAT

Ann. Geophys., 18, 1027–1042, 2000

  30 Sep 2000

30 Sep 2000

Plasma structure within poleward-moving cusp/cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events

M. Lockwood2,1, I. W. McCrea2, S. E. Milan3, J. Moen4, J. C. Cerisier5, and A. Thorolfsson5,6 M. Lockwood et al.
  • 1Department of Physics and Astronomy, Southampton University, UK
  • 2Space Science Department, Rutherford Appleton Laboratory, UK
  • 3Department of Physics and Astronomy, Leicester University, UK
  • 4Arctic Geophysics, University Courses on Svalbard, Longyearben, Norway
  • 5CETP, 4, avenue Neptune, F-94107 Saint-Maur, CEDEX France
  • 6Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
  • Correspondence to: M. Lockwood
  • e-mail:

Abstract. We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ă…lesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.

Key words: Ionosphere (polar ionosphere) - Magnetospheric physics (magnetopause; cusp and boundary layers; solar wind-magnetosphere interactions)

Special issue