Articles | Volume 17, issue 5
Ann. Geophys., 17, 642–649, 1999

Special issue: Solar System Plasmas

Ann. Geophys., 17, 642–649, 1999

  31 May 1999

31 May 1999

Heliospheric current sheet inclinations at Venus and Earth

G. Ma, K. Marubashi, and T. Maruyama G. Ma et al.
  • Communications Research Laboratory, 4-2-1 Nukui-Kitamachi Koganei-shi Tokyo, Japan
  • Correspondence to: G. Ma; e-mail:

Abstract. We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU) and Earth (1 AU) during December 1978-May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ~ 45° with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (<40° longitudinally), similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.

Key words. Interplanetary physics (interplanetary magnetic fields; sources of solar wind)

Special issue