Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 15, issue 7
Ann. Geophys., 15, 890–898, 1997
https://doi.org/10.1007/s00585-997-0890-8
© European Geosciences Union 1997
Ann. Geophys., 15, 890–898, 1997
https://doi.org/10.1007/s00585-997-0890-8
© European Geosciences Union 1997

  31 Jul 1997

31 Jul 1997

Nonlinear wave structures in collisional plasma of auroral E-region ionosphere

A. V. Volosevich1 and Y. I. Galperin2 A. V. Volosevich and Y. I. Galperin
  • 1Mogilev Pedagogical Institute, Mogilev, 212026, Belarus Republic
  • 2Space Research Institute of RAN, Moscow, 117810, Russia Republic

Abstract. Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora) when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion self-consistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of "electrostatic shock wave" or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.

Publications Copernicus
Download
Citation