Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 15, issue 1
Ann. Geophys., 15, 63–78, 1997
https://doi.org/10.1007/s00585-997-0063-9
© European Geosciences Union 1997
Ann. Geophys., 15, 63–78, 1997
https://doi.org/10.1007/s00585-997-0063-9
© European Geosciences Union 1997

  31 Jan 1997

31 Jan 1997

Model results for the ionospheric E region: solar and seasonal changes

J. E. Titheridge* J. E. Titheridge
  • Institute for Meteorology & Geophysics, University of Graz, Halbärthgasse 1, A-8010 Graz, Austria*
  • *Permanent address: Physics Department, The University of Auckland, Auckland, New Zealand

Abstract. A new, empirical model for NO densities is developed, to include physically reasonable variations with local time, season, latitude and solar cycle. Model calculations making full allowance for secondary production, and ionising radiations at wavelengths down to 25 Å, then give values for the peak density NmE that are only 6% below the empirical IRI values for summer conditions at solar minimum. At solar maximum the difference increases to 16%. Solar-cycle changes in the EUVAC radiation model seem insufficient to explain the observed changes in NmE, with any reasonable modifications to current atmospheric constants. Hinteregger radiations give the correct change, with results that are just 2% below the IRI values throughout the solar cycle, but give too little ionisation in the E-F valley region. To match the observed solar increase in NmE, the high-flux reference spectrum in the EUVAC model needs an overall increase of about 20% (or 33% if the change is confined to the less well defined radiations at λ < 150 Å). Observed values of NmE show a seasonal anomaly, at mid-latitudes, with densities about 10% higher in winter than in summer (for a constant solar zenith angle). Composition changes in the MSIS86 atmospheric model produce a summer-to-winter change in NmE of about –2% in the northern hemisphere, and +3% in the southern hemisphere. Seasonal changes in NO produce an additional increase of about 5% in winter, near solar minimum, to give an overall seasonal anomaly of 8% in the southern hemisphere. Near solar maximum, reported NO densities suggest a much smaller seasonal change that is insufficient to produce any winter increase in NmE. Other mechanisms, such as the effects of winds or electric fields, seem inadequate to explain the observed change in NmE. It therefore seems possible that current satellite data may underestimate the mean seasonal variation in NO near solar maximum. A not unreasonable change in the data, to give the same 2:1 variation as at solar minimum, can produce a seasonal anomaly in NmE that accounts for 35–70% of the observed effect at all times.

Publications Copernicus
Download
Citation