Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 14, issue 4
Ann. Geophys., 14, 375–382, 1996
https://doi.org/10.1007/s00585-996-0375-1
© European Geosciences Union 1996
Ann. Geophys., 14, 375–382, 1996
https://doi.org/10.1007/s00585-996-0375-1
© European Geosciences Union 1996

  30 Apr 1996

30 Apr 1996

Generation and evolution of interplanetary slow shocks

C.-C. Wu, S. T. Wu, and M. Dryer C.-C. Wu et al.

Abstract. It is well known that most MHD shocks observed within 1 AU are MHD fast shocks. Only a very limited number of MHD slow shocks are observed within 1 AU. In order to understand why there are only a few MHD slow shocks observed within 1 AU, we use a one-dimensional, time-dependent MHD code with an adaptive grid to study the generation and evolution of interplanetary slow shocks (ISS) in the solar wind. Results show that a negative, nearly square-wave perturbation will generate a pair of slow shocks (a forward and a reverse slow shock). In addition, the forward and the reverse slow shocks can pass through each other without destroying their characteristics, but the propagating speeds for both shocks are decreased. A positive, square-wave perturbation will generate both slow and fast shocks. When a forward slow shock (FSS) propagates behind a forward fast shock (FFS), the former experiences a decreasing Mach number. In addition, the FSS always disappears within a distance of 150R&odot; (where R&odot; is one solar radius) from the Sun when there is a forward fast shock (with Mach number ≥1.7) propagating in front of the FSS. In all tests that we have performed, we have not discovered that the FSS (or reverse slow shock) evolves into a FFS (or reverse fast shock). Thus, we do not confirm the FSS-FFS evolution as suggested by Whang (1987).

Publications Copernicus
Download
XML
Citation