Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 13, issue 8
Ann. Geophys., 13, 807–814, 1995
https://doi.org/10.1007/s00585-995-0807-3
© European Geosciences Union 1995
Ann. Geophys., 13, 807–814, 1995
https://doi.org/10.1007/s00585-995-0807-3
© European Geosciences Union 1995

  31 Aug 1995

31 Aug 1995

Solar wind velocity distribution on the heliospheric current sheet during Carrington rotations 1787-1795

B. Bala and S. R. Prabhakaran Nayar B. Bala and S. R. Prabhakaran Nayar

Abstract. The solar wind velocity distribution in the heliosphere is best represented using a v-map, where velocity contours are plotted in heliographic latitude-longitude coordinates. It has already been established that low-speed regions of the solar wind on the source surface correspond to the maximum bright regions of the K-corona and the neutral line of the coronal magnetic field. In this analysis, v-maps on the source surface for Carrington rotations (CRs) 1787–1795, during 1987, have been prepared using the interplanetary scintillation measurements at Research Institute of Atmospherics (RIA), Nagoya Univ., Japan. These v-maps were then used to study the time evolution of the low-speed (\leq450 km s–1) belt of the solar wind and to deduce the distribution of solar wind velocity on the heliospheric current sheet. The low-speed belt of the solar wind on the source surface was found to change from one CR to the next, implying a time evolution. Instead of a slow and systematic evolution, the pattern of distribution of solar wind changed dramatically at one particular solar rotation (CR 1792) and the distributions for the succeeding rotations were similar to this pattern. The low-speed region, in most cases, was found to be close to the solar equator and almost parallel to it. However, during some solar rotations, they were found to be organised in certain longitudes, leaving regions with longitudinal width greater than 30° free of low-speed solar wind, i.e. these regions were occupied by solar wind with velocities greater than 450 km s–1. It is also noted from this study that the low-speed belt, in general, followed the neutral line of the coronal magnetic field, except in certain cases. The solar wind velocity on the heliospheric current sheet (HCS) varied in the range 300–585 km s–1 during the period of study, and the pattern of velocity distribution varied from rotation to rotation.

Publications Copernicus
Citation