Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 13, issue 2
Ann. Geophys., 13, 118–129, 1995
https://doi.org/10.1007/s00585-995-0118-8
© European Geosciences Union 1995
Ann. Geophys., 13, 118–129, 1995
https://doi.org/10.1007/s00585-995-0118-8
© European Geosciences Union 1995

  28 Feb 1995

28 Feb 1995

Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements

A. Pedersen A. Pedersen

Abstract. Several satellites (GEOS-1, GEOS-2, ISEE-1, Viking and CRRES) carried electric field experiments on which probes were driven by a current from the satellite to be close to the plasma potential. The potential difference between an electric field probe and its spacecraft (with conductive surfaces) can be used to determine the ambient electron density and/or electron flux with limited accuracy but with high time resolution, of the order of 10-100 ms. It is necessary for the development of this diagnostic method to understand the photoemission characteristics of probes and satellites. According to the electric field experiments on the above-mentioned satellites, all materials develop very similar photoemission properties when they are beyond the influence of atmospheric oxygen. The photoelectron yield steadily increases over the first few months in space and reaches values well above those measured on clean surfaces in the laboratory. The method can be used for solar radiation levels corresponding to distances from 0.4 to 5 AU from the Sun.

Publications Copernicus
Citation