Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 15, issue 2
Ann. Geophys., 15, 165–180, 1997
https://doi.org/10.1007/s00585-997-0165-4
© European Geosciences Union 1997
Ann. Geophys., 15, 165–180, 1997
https://doi.org/10.1007/s00585-997-0165-4
© European Geosciences Union 1997

  28 Feb 1997

28 Feb 1997

Uncertainties in field-line tracing in the magnetosphere.
Part I: the axisymmetric part of the internal geomagnetic field

D. M. Willis*,1, J. Robin Singh2,1, and J. Comer2,1 D. M. Willis et al.
  • 1Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
  • 2School of Mathematical and Information Sciences, Coventry University, Coventry, CV1 5FB, UK Spain
  • *Also Visiting Reader in Physics, University of Sussex, Falmer, Brighton, BN1 9QH, UK

Abstract. The technique of tracing along magnetic field lines is widely used in magnetospheric physics to provide a "magnetic frame of reference'' that facilitates both the planning of experiments and the interpretation of observations. The precision of any such magnetic frame of reference depends critically on the accurate representation of the various sources of magnetic field in the magnetosphere. In order to consider this important problem systematically, a study is initiated to estimate first the uncertainties in magnetic-field-line tracing in the magnetosphere that arise solely from the published (standard) errors in the specification of the geomagnetic field of internal origin. Because of the complexity in computing these uncertainties for the complete geomagnetic field of internal origin, attention is focused in this preliminary paper on the uncertainties in magnetic-field-line tracing that result from the standard errors in just the axisymmetric part of the internal geomagnetic field. An exact analytic equation exists for the magnetic field lines of an arbitrary linear combination of axisymmetric multipoles. This equation is used to derive numerical estimates of the uncertainties in magnetic-field-line tracing that are due to the published standard errors in the axisymmetric spherical harmonic coefficients (i.e. gn0 ± δgn0). Numerical results determined from the analytic equation are compared with computational results based on stepwise numerical integration along magnetic field lines. Excellent agreement is obtained between the analytical and computational methods in the axisymmetric case, which provides great confidence in the accuracy of the computer program used for stepwise numerical integration along magnetic field lines. This computer program is then used in the following paper to estimate the uncertainties in magnetic-field-line tracing in the magnetosphere that arise from the published standard errors in the full set of spherical harmonic coefficients, which define the complete (non-axisymmetric) geomagnetic field of internal origin. Numerical estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, calculated here for the axisymmetric part of the internal geomagnetic field, should be regarded as "first approximations'' in the sense that such estimates are only as accurate as the published standard errors in the set of axisymmetric spherical harmonic coefficients. However, all procedures developed in this preliminary paper can be applied to the derivation of more realistic estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, following further progress in the determination of more accurate standard errors in the spherical harmonic coefficients.

Publications Copernicus
Download
Citation