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Abstract. In previous works, we found Euler potentials for the combined magnetic field of Earth’s dipole, field aligned currents,

ring current, and the magnetopause surface currents (represented by Dungey’s term), in the magnetosphere. Field aligned

currents, also known as the Birkeland currents, experience closure in the ionosphere, through the shell-current patterns, also

known as the Pedersen and Cowley currents. Field aligned currents can be measured at an altitude of 800 km, farther, or closer,5

and can be reconstructed in the entire magnetosphere with tracing along the magnetic field lines. The determination of shell

currents is more difficult. They can only be measured in the ionosphere, because they form a closure of field aligned currents

in the ionosphere. Analytical and numerical modelings of the shell currents are not easy tasks and require knowledge of the

conductivity tensor in the ionosphere. We propose an alternative approach for the shell currents modeling. In this paper, we

determine current density distribution in a finite thickness ionosphere. Our system consists of the ionosphere, a region above it10

(outer region) and a region below it (inner region). The dipole field is present in the entire system. In addition, there is a field

generated by the field aligned currents in the outer region. We search for a continuation of these currents into the ionosphere,

for shell currents.

1 Introduction

Kintner et al. (1974) deduced shell and field-aligned currents (FACs) during the March 16, 1973 substorm. They reported a15

southward current density of 14.37 µA m−2, a westward current density of 22.5 µA m−2, and a FAC density of 5 µA m−2.

The latter current was concentrated at heights of 120–190 km. A southward electric field of 60 mV m−1 identified southward

currents as shell (Pedersen) currents. Westward (Cowley) currents were considered as Hall currents, flowing perpendicularly to

the electric field due to the Hall conductivity in the ionosphere. Rostoker and Hron (1975) explained eastward and westward

electrojets in the ionosphere, as well as their interrelations with convection in the magnetosphere. The electrojets are caused by20

precipitation of high energy electrons (E > 20 keV). Kamide and Brekke (1977) determined altitudes of the auroral electrojets

in the ionosphere during disturbed periods. It was found that the eastward electrojet is located at 120 km and the westward

electrojet at 100 km. Banks and Yasuhara (1978) studied the electric field of the night time ionospheric E-region. They found

that relatively large electric fields can exist in the absence of shell currents in the ionosphere, because of insufficient particle

precipitation. Troshichev et al. (1979) noticed that the shell currents effect can be significant on Earth’s surface and it is not25
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canceled by distant FACs during moderate and strong geomagnetic storms. Opgenoorth et al. (1983) determined the structure

of the electric currents system in the vicinity of a westward traveling surge. A counterclock loop of currents around a leading

edge of the surge was revealed. Senior et al. (1982) noticed that the westward electrojet in the ionosphere extends across

the Region 2 / Region 1 boundary in the ionosphere morning sector and that the Region 2 FACs are closed by southward

Pedersen currents within the ionosphere. Raghavarao et al. (1984) found that the ionization density at 100 km increases by30

a factor of 2 to 10 from the time of sunset to midnight and the plasma density centered around 120 km altitude deepens by

a factor of 2 to 5 during the same period. Baumjohann (1982) reviewed studies of field-aligned and shell currents. Araki

et al. (1989) investigated the geomagnetic effects of the Hall and Pedersen currents flowing in the auroral ionosphere. They

found that in July 1987, the northward currents contribution to the H-component was 0.56 nT, while that of eastward currents

was in the range 0.14–0.20 nT. Kirkwood et al. (1988) determined that the highest observed conductance for northward35

ionospheric currents was 48 S, and for eastward currents 120 S. Werner and Ferraro (1990) showed that the vertical profiles

of the shell current density in the E and D layers can be obtained with a high-power auroral stimulation (HIPAS) heating

facility. The behavior of these ionospheric currents can be deduced from a comprehensive study of extremely low frequency

(ELF) signals received at a local field site. Devasia and Reddy (1995) presented a method to retrieve the height-varying east-

west wind in the equatorial electrojet from the local wind-generated electric field, or from the radar-measured phase velocity40

of the type II plasma waves. Galand and Richmond (2001) proposed a simple parameterization for the Pedersen and Hall

conductances produced by proton precipitation. Their derivation is based on a proton transport code for computing the electron

production rate and on an effective recombination coefficient for deducing the electron density. Amm (2001) utilized Cluster II

mission data which provides the possibility to instantaneously obtain spatially distributed measurements of FACs from a fleet

of satellites; and presented the “elementary current method” that combines such measurements mapped to the ionosphere with45

two-dimensional ground magnetic data, to calculate actual ionospheric currents, without the need for further assumptions.

Hosokawa et al. (2010) presented an appearance of the shell current layer carried by the electrons in the auroral D-region.

Such a layer was detected by the EISCAT VHF radar in Tromsø, Norway when an intense pulsating aurora (PA) occurred.

Amm and Fuji (2008) commented on a long-standing debate on to what extent the strong upward FACs in a substorm breakup

spiral are either closed by downward FAC through Pedersen currents flowing radially to the center of the spiral (local closure),50

or by currents that flow westward though a Cowling channel which extends in the region eastward of the spiral (Cowling

closure). They showed that for the pseudobreakup spiral event on February 3, 1999, 68 percent of the upward FAC in the spiral

is closed via the local closure current system and the remaining 32 percent via the Cowling closure current system. Sheng et al.

(2014) deduced, based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites

observations from 2008 to 2011, the height-integrated northward and westward conductivities in both E (100–150 km) and F55

(150–600 km) regions and their ratio. The maximum ratio in the northern summer hemisphere is 5.5, which is smaller than

that from the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM v1.94) simulation which is

9. It was assumed that the energy inputs into the F region may be underestimated in the model. Tulegenov and Streltsov

(2019) investigated the role of the Hall conductivity in ionospheric heating experiments. Ionospheric heating by powerful X-

mode waves changes the Hall and Pedersen conductances in the E and D regions, which leads to the generation of ultra-low60
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frequency (ULF)/ELF/very low frequency (VLF) waves, when the electric field exists in the ionosphere. Tanaka et al. (2020)

identified shell currents in the ionosphere from ground based magnetic variations using Biot-Savart’s law. Robinson et al.

(2020) determined height-integrated conductances in the ionosphere from the electron densities measured by a radar. Carter et

al. (2020) parameterized the height-integrated conductances in the ionosphere by interplanetary magnetic field.

In the following sections, we present an analytical description of the shell-current system in the ionosphere considered as a65

relatively thick layer. First, a smooth transition of the tangential-to-the-layer component of the magnetic field from zero below

the ionosphere to non-zero tangential component above the ionosphere is provided in the layer. Then the current density is

determined from it. After that, the Euler potentials are found for the ionosphere, which opens the way for precise determination

of electrons and protons motion in the layer. The paper is organized in the following way. The Method is described in Section 2.

The results of the calculations of the magnetic field, current density, and the Euler potentials are outlined in Section 3, followed70

by Section 4 in which our conclusions are summarized.

2 Method

As our model ionosphere, we consider only a denser part of the real ionosphere, in heights 100–400 km. Euler potentials of the

inner region, below the ionosphere, r < rin = 1.0157r0 (height 100 km above Earth’s surface), are

α= αd =
B0 r

3
0 sin

2 θ

r
, βin = βd =−φ. (1)

The variables are spherical coordinates r, θ, and φ, with the origin at Earth’s center and the z axis coinciding with the magnetic75

axis and pointing to North. The angle φ is measured from an arbitrary equatorial point because our problem is axially sym-

metric. Here, B0 is determined by the Earth’s magnetic dipole (B0 = 31.2 µT in the present paper), and r0 is the Earth’s radius

(6378 km). The αd and βd are Euler potentials of a dipole. In the outer region, above the ionosphere (r > rout = 1.0627r0,

height 400 km), the Euler potentials are

α= αd =
B0 r

3
0 sin

2 θ

r
, βout = βd +βt =−φ+

g0 r
2 cosθ

r20 sin
4 θ

. (2)

Here, g0 is a unit-less quantity that determines the magnitude of FACs. Its evaluation is described in Romashets and Vandas80

(2020), where it is based on observations by Korth et al. (2010). The transition takes place in the layer of thickness ∆r =

rout − rin (300 km). Formulae for the φ component are different for the ionosphere and the region above it, unlike the r and θ

components, the formulae of which cover both regions. The φ component changes, from Bφ,in = 0 in the inner region to

Bφ,out =
B0 g0 r0
r sinθ

(3)

in the outer region. This component in the layer experiences a smooth change from its value below the ionosphere to one above

the ionosphere. In the entire volume, in the ionosphere, above and below the ionosphere, it is modeled by a step-up, tanh,85

function:

Bφ =
B0g0r0
2r sinθ

[
1+ tanh

6(r− rc)

∆r

]
. (4)
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Here, rc = (rin+rout)/2 is the distance from Earth’s center to the middle point of the ionosphere. The φ component above rout

and below rin approaches the values provided correspondingly by Eq. (1) and Eq. (2) very rapidly. With Eq. (4), the observed

magnetic field profiles are well described. The transition from the magnetic field determined by Eq. (1) to the magnetic field

determined by Eq. (2) happens mostly inside the ionosphere. On the other hand, at a much smaller rate, the transition continues90

outside of the ionosphere as well. The currents that produce the change are mostly confined inside the ionosphere. This usage

of the step-up function is not new. It was utilized widely, for example, by Landau and Lifshitz (1981), in quantum mechanics

applications for description of potential energy of electrons in metals.

The Euler potentials for a magnetic field in the ionosphere are searched because the motion of charged particles can be easily

calculated with them (Romashets and Vandas , 2011, 2012; Vandas and Romashets , 2014, 2016). In order to ensure that the φ95

component of the magnetic field in the layer changes with r according to Eq. (4), we will keep α the same as in Eqs. (1) and

(2), while β is determined from

Bφ =
1

r

(
∂α

∂r

∂β

∂θ
− ∂β

∂r

∂α

∂θ

)
. (5)

The latter equation can be solved for β by various approximation methods. An important condition for β is that it should be

continuous in the layer and around it, for proper determination of the magnetic field lines and particle trajectories. One of the

methods decomposes Eq. (4) into the sum100

Bφ =
B0g0r0
r sinθ

I∑
i=1

ci

(
r

r0

)ni

. (6)

The coefficients ci are determined from the best fit to the step-up function

st(r) =
1

2

[
1+ tanh

6(r− rc)

∆r

]
(7)

by the sum

sm(r) =

I∑
i=1

ci

(
r

r0

)ni

. (8)

There is a problem that it is not possible to decompose Eq. (7) into the sum of power functions in Eq. (8) on the entire

interval (rin, rout), but it can be done on any fraction of the interval of the length which is one third of it or less. This follows

directly from the fact that the corresponding Taylor sum of the st function has a radius of convergence one sixth of the105

interval. Therefore, we used four smaller overlapping intervals (subintervals), covering the entire interval, and determined the

coefficients ci for them separately. Details are given in Appendix A. We used n1 =−1.8, ni =−1.8+19.8(i− 1)/30 for

I ≥ i > 1, and I = 30 for all subintervals. The choice of ni values for the selected I was determined from the best agreement

between Eqs. (8) and (7), by trials and errors. We have found that the number I larger than 30 does not improve the agreement

between the two functions in our calculations (using double precision).110

The β potential in Eq. (5) is searched in the form

β =−φ+

I∑
i=1

ciRi(r)Θi(θ). (9)
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Here, Ri(r) is a function of r and Θi(θ) is a afunction of θ, which are to be found. Inserting this β into Eq. (5) and equating the

terms with the same ci between Eqs. (5) and (6), we can determine Ri(r) and Θi(θ). Taking into account that α in Eqs. (1)–(2)

depends on r as 1
r , we conclude that Ri should be115

Ri = g0

(
r

r0

)ni+2

. (10)

On the other hand, Θi should satisfy

1

sinθ
=−sin2 θΘ′

i − (2ni +4)sinθ cosθΘi, (11)

which can be integrated by a method of variable coefficients. The prime means a derivative. The solution is

Θi =− sgn(cosθ)

2(1+ni)sin
2 θ

2F1

(
1

2
,1+ni,2+ni; sin

2 θ

)
. (12)

Here, the sgn is the signum function and 2F1 is the hypergeometric function. The entire interval (rin, rout) is divided into four

parts as described in Appendix A and β is found for each part of the interval. The β in the first part of the interval is

β1 =−φ+

I∑
i=1

c1,iR1,iΘ1,i. (13)

The coefficients c2,i , c3,i and c4,i are determined for the remaining parts of the interval, which means that β is also determined120

in these parts. The coefficients are different and β may initially experience jumps at the interfaces from one part to another

one, and at the ends of the entire interval. The jumps are removed with proper calibration of β. Romashets and Vandas (2024)

and Vandas and Romashets (2024) proposed a technique which allows us to avoid the discontinuities in β at interfaces. The β

in the second, third, and fourth parts should be adjusted by addition of functions of α. Graphically, this can be explained as a

plot of a difference of β versus α along the interface, see for details Vandas and Romashets (2024). Once this function f2(α)125

is determined, then continuous β, a rectified β in the second part, is

β = β2 + f2(α). (14)

Similarly, in the third part

β = β3 + f3(α), (15)

and analogically for the fourth part (see Appendix A for details).

Knowledge of Bφ in the transition layer, Eq. (4), allows explicit expressions of the current density components, and of the

current density magnitude. Using the equation J = 1
µ0

∇×B, where µ0 is the vacuum magnetic permeability, the components130

are

Jr = 0,

Jθ = − 3B0 g0 r0
µ0∆r r sinθ

sech2
[
6(r− rc)

∆r

]
, (16)

Jφ = 0.

The maximum current density is reached in the middle of the layer.
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3 Results

The φ component of the magnetic field in the entire interval for θ = π/6 is shown in Figure 1. We use g0 = 0.006, which

corresponds to significant geomagnetic activity levels (Romashets and Vandas , 2020, 2022). The electric-current-density θ135

component from Eq. (16) is depicted in Figure 2. The fit of the step-up function in the ionosphere is shown in Figure 3.
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Figure 1. The φ component of the magnetic field in the ionosphere for θ = π/6 from Eq. (4). The interval (rin, rout) is marked by dashed

vertical lines.

Using the α from Eq. (1) and the rectified β, we calculated the magnetic field using

B =∇α×∇β (17)

and numerical differentiation. The original φ component of the magnetic field, Eq. (4), is compared to that calculated with

Eq. (17) in Figure 4. The coincidence is excellent.

4 Discussion140

The transition from one region to another one in Cartesian coordinates can demonstrate the approach better. Let us consider a

planar layer −x0 < x < x0. The pair of Euler potentials in the layer

α=B0

(
y− x

2
− x0

6
logcosh

3x

x0

)
, β = z. (18)
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Figure 2. The θ component of the electric current density in the ionosphere for θ = π/6 from Eq. (16). The interval (rin, rout) is marked by

dashed vertical lines.

provide that the y-component of the magnetic field is smoothly changing:

By =
1

2
B0

(
1+ tanh

3x

x0

)
. (19)

This magnetic-field component is plotted in Figure 5. There is a smooth change from By ≈ 0 at x=−x0 to By ≈B0 at x= x0.

The dependence of α on x is demonstrated in Figure 6. The current density in the layer has only z-component,145

Jz =
3B0

2µ0

sech2 3x
x0

x0
. (20)

Its maximum (Jmax) is reached in the middle of the layer. The profile of the electric-current density z-component given by

Eq. (20) is depicted in Figure 7. In Cartesian coordinates, one can easily deal with both tangential to the layer coordinates and

provide a smooth transition from their values in one region to another.

Returning to our spherical system in the ionosphere, it is interesting to see that in addition to the toroidal component above

the ionosphere, which is associated with the θ-component of the current density in the ionosphere, we can also consider the150

transition of the poloidal (θ) component of the magnetic field. The magnetic field above the ionosphere is provided by the

scalar potential, applicable for θ1 > θ > θ2, where the magnetic field components are finite,

Ψ=B0r0g0
cosφ

√
1− cosθ√

1+ cosθ
, (21)
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Figure 3. Fit of the step-up function, Eq. (7), red line, by a sum of power functions, Eq. (8), dashed blue line, in the ionosphere. The interval

(rin, rout) is marked by dashed vertical lines.

is given by

Br = 0, (22)155

Bθ =
B0r0g0 cosφ

r(1+ cosθ)
, (23)

Bφ = −B0r0g0 sinφ
√
1− cosθ

r sinθ
√
1+ cosθ

. (24)

It is current-free. The magnetic field in the ionosphere has components as given by Eqs. (22)–(24), but each multiplied by the

function st from Eq. (7). In a similar fashion, described in Method, the Euler potentials and current density in the ionosphere are

found. Combining Eq. (3) and Eqs. (22)–(24), we can model locally a real ratio between Pedersen and Hall currents. The radial160

component is absent in Eqs. (22)–(24), this is tangential discontinuity, due to special selection of the harmonic in Eq. (21),

which does not depend on r.

The results of calculations depend on Bφ outside of the ionosphere, it is the input of the model. Different Bφ will lead to

different profiles in the ionosphere. We divide the ionosphere into four intervals which enables us to consider inhomogeneities

in r direction. The tanh function is used on every interval. On the other hand, because the problem of finding the magnetic165

field in the ionosphere is solved locally, for specific φ and θ, this will describe inhomogeneities in φ and θ directions as well.
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Figure 4. The given (red line) and model (dashed green line) φ component of the magnetic field in the ionosphere. The model Bφ was

calculated from α and β by numerical differentiation. The interval (rin, rout) is marked by dashed vertical lines.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x/x0

B
y
/B

0

Figure 5. By in the layer.
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Figure 6. Euler potential α in the layer for y = 0.
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Figure 7. Current density in the layer.
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5 Conclusions

It is important to construct the Euler potentials α and β for the study of charged-particles motion in the medium. It is especially

convenient to have α and β expressed in a compact analytical form. In this work, we found continuous Euler potentials in the

finite thickness contact discontinuity and applied them for the shell currents in the ionosphere. The result opens the way for170

studies of fine structure of such kind of discontinuities in the solar wind, magnetosphere, and interstellar space. The procedure

consists of three steps. First, the magnetic field in the interface region is obtained, which represents a smooth transition from

the magnetic field on one side to another one. Second, the region is divided into four parts and the Euler potentials are derived

for each of them. One of the potentials, α, is the same, but there are four betas, one for each part of the interval. Next, because

the addition to β of a function of α does not change the resulting magnetic field, we add needed functions to betas in each part175

of the interval, and provide continuity of β in the interface region (the ionosphere in our case) and on its boundaries.

Appendix A: Determination of the coefficients ci and rectification of β

We divide the interval ⟨rin, rout⟩ into four subintervals of equal lengths, ⟨rin, r12⟩, ⟨r12, r23⟩, ⟨r23, r34⟩, and ⟨r34, rout⟩ where

r12 = rin+(rout−rin)/4, r23 = rin+2(rout−rin)/4, and r34 = rin+3(rout−rin)/4. For each subinterval, we determine the

coefficients separately. Let us consider the first subinterval. We require180

1
2 (rin+r12)+

1
6∆r∫

1
2 (rin+r12)− 1

6∆r

[sm(r)− st(r)]
2
dr

=

1
2 (rin+r12)+

1
6∆r∫

1
2 (rin+r12)− 1

6∆r

[
I∑

i=1

c1,i

(
r

r0

)ni

− st(r)

]2

dr =min (A1)

where the integration is over an interval of the length ∆r/3 symmetrically overlapping the subinterval in play. Following the

standard procedure for minimization, we differentiate Eq. (A1) by c1,k and set it to zero, finally obtaining

I∑
i=1

c1,i

1
2 (rin+r12)+

1
6∆r∫

1
2 (rin+r12)− 1

6∆r

(
r

r0

)ni+nk

dr =

1
2 (rin+r12)+

1
6∆r∫

1
2 (rin+r12)− 1

6∆r

st(r)

(
r

r0

)nk

dr (A2)185

which for k = 1, . . . , I represents a set of linear equations for c1,i that is solved. The integrals on the left-hand side of Eq. (A2)

can be done analytically. We proceed in the same way for the remaining subintervals 2–4 and thus obtain four sets of the ci

coefficients, which determine four functions, β1, β2, β3, and β4, by Eq. (13). These functions are independent and one cannot

expect that neighboring betas will have the same values at the interface (e.g., β1 and β2 at r12); Figure A1(a) demonstrates this.

To make β continuous in the whole interval ⟨rin, rout⟩, we follow a procedure of rectification described in Vandas and190

Romashets (2024). It relies on the fact, that when a function of α is added to β, it has no effect on the related magnetic field.

We define β = β1 for r < r12. The β2 is adjusted in the following way. The α at the interface r12, α=B0 r
3
0 sin

2 θ/r12, is a

11



function of θ only. We introduce its inverse function

θ12(α) = arcsin

√
αr12
B0 r30

. (A3)

The adjusted β2, denoted β2a, is195

β2a(r,θ,φ) = β2(r,θ,φ)+β1{r12,θ12[α(r,θ)],0}−β2{r12,θ12[α(r,θ)],0}. (A4)

We define β = β2a for r ∈ ⟨r12, r23⟩. Similarly, the adjusted β3 is

β3a(r,θ,φ) = β3(r,θ,φ)+β2a{r23,θ23[α(r,θ)],0}−β3{r23,θ23[α(r,θ)],0}, (A5)

and analogically β4a. We define β = β3a for r ∈ ⟨r23, r34⟩ and β = β4a for r > r34. This rectified β is shown in Figure A1(b).
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Figure A1. The Euler potential β (a) before and (b) after additions of functions f(α).
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