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Abstract. The prominent broad upshifted maximum (BUM) feature in electromagnetic emissions stimulated by powerful high

frequency radio waves in the ionosphere exhibits an exponential spectrum for pump frequencies near a harmonic of the iono-

spheric electron gyro frequency. Exponential power spectra is a characteristic of deterministic chaos. In the present treatment,

a two-fluid model is derived for lower hybrid (LH) oscillations driven by parametric interaction of the electromagnetic pump

field, electron Bernstein mode and upper hybrid mode as previously proposed to interpret the BUM. In two dimensional ge-5

ometry across the geomagnetic field, LH oscillations localized in cylindrical density depletions are associated with multi-cell

plasma drift patterns. The numerical simulations show that topological modulations of the drift can give rise to approximately

Lorentzian shaped pulses in the LH time signal. For parameter values typical of the ionospheric experiments, the exponential

power spectrum of the Lorentzian pulses has a slope that is consistent with the slope of the BUM spectrum. The BUM spectral

structure is therefore attributed to deterministic chaos in LH dynamics.10
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1 Introduction

Electromagnetic emissions excited by powerful high frequency (HF) electromagnetic waves transmitted into the ionosphere

from the ground exhibit rich spectral structure that depends notably on the pump frequency f0 and its relation to a multiple

s of the ionospheric electron gyro frequency fe (Leyser, 2001). Figure 1 displays the most prominent spectral feature of15

the stimulated electromagnetic emissions (SEE), the so-called broad upshifted maximum (BUM) with its spectral maximum

at fBUM ≈ f0 + 24 kHz. The high frequency flank of the BUM commonly exhibits an exponential power spectrum, with a

constant slope in a semi-logarithmic plot. Also seen in Fig. 1 is a downshifted maximum (DM) at approximately f0− 10 kHz.

As first established in the fluid and nonlinear dynamics communities (Frisch and Morf, 1981; Greenside et al., 1982),

exponential power spectra are a characteristic of deterministic chaos. Research on magnetically confined laboratory plasma20

showed that the associated time evolution consists of intermittent narrow pulses of Lorentzian shape (Pace et al., 2008) that

arise because of topological modulations in the plasma drift trajectories in vicinity of separatrices in the velocity field (Maggs
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Figure 1. A BUM spectral feature observed in experiments at the Sura HF facility in Russia with f0 = 5.426 MHz, 4fe ≈ 5.407 MHz and

∆fBUM ≈ 24 kHz (27 September 1998). Taken from Leyser (2021) where it is adapted from Carozzi et al. (2002).

and Morales, 2011, 2012). The topological modulations of a single-cell drift pattern can make pulses of plasma escape or enter

the flow cell. In a multi-cell flow pattern the modulations can make plasma pulses cross separatrices between the cells to switch

the flow cell. Numerical simulations of structures formed by a temperature filament in magnetically confined plasma showed25

that Lorentzian pulses can arise by the topological modulations of only two modes of coherent drift waves (Shi et al., 2009).

A Lorentzian pulse has the functional form (Pace et al., 2008; Hornung et al., 2011; Maggs and Morales, 2011):

L(t) =
A

1 + ( t−t0τ )2
(1)

whereA is the amplitude of the pulse of width τ centered at time t= t0. The Fourier transform ofL(t) is L̂(ω) =Aτπeiωt0 e−ωτ ,

so that its power spectrum is30

P (ω) =A2τ2π2 exp(−2ωτ) (2)

A signal time series containing Lorentzian pulses of approximately equal widths τ will thus exhibit an exponential power

spectrum P (f)∝ exp(−f/fs) with a scaling frequency fs = 1/(4πτ).

A simplified model of the E×Bg drift associated with lower hybrid (LH) oscillations localized in cylindrical geometry

across the geomagnetic field Bg (E is the electric field of the LH oscillations) suggested that deterministic chaos could also35

be excited by HF radio waves in the ionosphere (Leyser, 2021). It was shown that the drift trajectories can be chaotic in the

localized multi-cell standing wave pattern of the driving oscillations in the plane perpendicular to Bg. This dynamics exhibits

an exponential power spectrum that is consistent with that of the BUM feature in the SEE spectrum.

The frequency of the BUM, fBUM, follows the empirical relation (Leyser et al., 1989; Leyser, 2001)

fBUM− f0 ≈ f0− sfe (3)40
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where s≥ 3. This dependence suggests that the BUM is excited by a parametric four-wave interaction. Huang and Kuo (1994)

developed a one-dimensional analytical model involving the electromagnetic pump wave with angular frequency and wave

vector (ω0, k0), electron Bernstein (EB) waves (ω1 . sωe, k1), upper hybrid (UH) waves (ω2 = 2πfBUM & sωe, k2) and non-

resonant LH oscillations (ω3, k3). The matching conditions in their electrostatic approximation are ω1 +ω3 = ω0 = ω2−ω3

and k1 + k3 = 0 = k2− k3. With this, ω3� ω1 . ω0 . ω2 (ωα = 2πfα for α= 0,1,2,3). By assuming that the UH mode45

at ω2 > ω0 is converted to electromagnetic emissions by scattering off filamentary density striations, the emissions could

propagate to the ground to be detected as the BUM in the SEE spectrum. The theoretical model was found to be consistent with

experimental results and has been verified by numerical simulations of an electrostatic particle-in-cell model with one periodic

space-dimension and three velocity-dimensions (Xi and Scales, 2001).

In the present treatment a two-fluid model is presented of LH oscillations excited by the beating of an electromagnetic pump50

field with EB and UH oscillations assumed to be localized in a cylindrical density depletion in the plane perpendicular to

Bg. It complements the study of parametric four-wave interaction by Huang and Kuo (1994) and focuses on the effects of

an important nonlinear term for the LH dynamics and by considering two spatial dimensions. Further, the treatment expands

on Leyser (2021) by including the physics of LH oscillations instead of only the associated E×Bg drift. Simulation results

are obtained with parameter values typical of those in electromagnetic pumping of ionospheric F region plasma and show55

deterministic chaos in the LH dynamics and exponential power spectra consistent with those observed for the BUM.

2 Theory

LH dynamics is described by a magnetized electron fluid and unmagnetized ion fluid. For simplicity, the electron and ion fluids

are here taken to be cold, i.e., the electron and ion temperatures are set to zero. All electric fields and velocities are considered

to be in the x–y plane perpendicular to a static and homogeneous geomagnetic field Bg =Bgẑ.60

The electron density is taken to be ne = ns+n3+n1+n2 ≡ ns+n3+nh, where ns is the static background electron density

and nh contains the HF terms. The electron velocity is ve = v0 +v1 +v2 +v3 ≡ vh +v3, where vh contains the HF electron

velocity terms. For reference, the quantities describing the four interacting wave modes are collected in Table 1. The force and

charge continuity equations for v3 and n3 at the LH time scale are:

me
∂v3

∂t
=−eE3− ev3×Bg−me〈(vh·∇⊥)vh〉− νemev3 (4)65

∂n3
∂t

+∇⊥·(neve) = 0 (5)

where ∇⊥ ≡ (∂/∂x)x̂+ (∂/∂y)ŷ, x̂ and ŷ are unit vectors in the x and y directions, respectively, E3 is the LH electric

field, and νe is the electron collision frequency (me and −e are the electron mass and charge, respectively). The term F =

me〈(vh·∇⊥)vh〉 is the ponderomotive force describing the nonlinear low frequency effect of the HF waves on the electrons70

and the angular brackets denote averaging the enclosed quantities over the HF oscillations.
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Table 1. Parameters for the four wave modes responsible for the Broad Upshifted Maximum (BUM)

Mode Density Velocity Frequency Conditions

Ambient ns vs = 0 fs = 0 Stationary

Electromagnetic n0 v0 f0 Pump wave

Electron Bernstein (EB) n1 v1 f1 f1 . sfe

Upper Hybrid (UH) n2 v2 f2 f2 = fBUM & sfe

Lower Hybrid (LH) n3 v3 f3 f3 ≈ f0 − f1 ≈ f2 − f0

High Frequency (HF) nh vh f0 nh = n0 +n1 +n2, vh = v0 +v1 +v2

Equation (5) gives at the LH time scale

∂n3
∂t

+ (ns +n3)∇⊥·v3 +v3 · ∇⊥n3 =−∇⊥·〈nhvh〉 (6)

The last (advection) term on the left-hand side is crucial to include the chaotic dynamics, but has commonly been neglected in

studies of nonlinear normal mode-coupling of parametric interactions. For simplicity, this term is not included self consistently.75

To investigate the effect of the advection term, v3 is replaced by an externally provided drift velocity vD. Equation (6) is further

simplified by that ns� |n3|, neglecting the effect of static density inhomogeneity (∇⊥ns = 0), and with ∇⊥·〈nhvh〉 ≈ 0

(Istomin and Leyser, 1995), so that

∂n3
∂t

+ns∇⊥·v3 +vD · ∇⊥n3 = 0 (7)

By noting that the second term in the right-hand side of Eq. (4) is the largest, v3 can be obtained by iteration (Istomin and80

Leyser, 1995), giving

v3 =
e

meωe

( 1

Bg
E3×Bg−

1

ωe

∂E3

∂t

)
− 1

meωe

( 1

Bg
Bg×F +

1

ωe

∂F

∂t

)
− νe
ωe

1

Bg
E3 (8)

where ωe = 2πfe = eBg/me and the last term was included to account for collisional damping. The ponderomotive force is85

taken to be (Istomin and Leyser, 1995)

F =
1

8

e2

me

1

(ω0 +ωe)2
∇⊥|Eh|2 (9)

Eh = E0+E1+E2 is the total HF electric field. For simplicity, an additional term that depends on the electron gyro harmonic

s derived by Istomin and Leyser (1995) has been neglected.

Substituting Eq. (8) into Eq. (7) to eliminate v3 gives90

∂n3
∂t

=
ens
meω2

e

(
∂

∂t
+ νe

)
∇⊥·E3 +

ns
meω2

e

∂

∂t
(∇⊥·F ) (10)
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With the Poisson equation ε0∇⊥·E3 = e(ni3−n3), an equation relating the electron density fluctuations n3 to those of the ion

density ni3 is obtained as (ε0 is the vacuum permittivity)

∂n3
∂t

=
ω2
p

ω2
uh

∂ni3
∂t

+ νe
ω2
p

ω2
uh

(ni3−n3)− ω2
e

ω2
uh

vD·∇⊥n3 +
ns

meω2
uh

∂

∂t
(∇⊥·F ) (11)

where ω2
uh = ω2

p +ω2
e and ωp is the electron plasma frequency.95

The force and charge continuity equations for the unmagnetized ion fluid are similarly,

mi
∂vi3

∂t
= eE3− νimivi3 (12)

∂ni3
∂t

+ (ns +ni3)∇⊥·vi3 +vD·∇⊥ni3 = 0 (13)

where νi is the ion collision frequency. Eliminating vi3 and using again the Poisson equation to eliminate E3 results in100 (
∂2

∂t2
+ω2

pi + νi
∂

∂t

)
ni3 = ω2

pin3−
∂vD

∂t
·∇⊥ni3−vD·∇⊥

∂ni3
∂t

(14)

Equations (11) and (14) are a coupled set of equations for the electron and ion densities, n3 and ni3 associated with the LH

dynamics driven by the external fields through F and vD.

In order to relate the electromagnetic pump, EB, UH and LH fields to one another through F and vD, it is recalled that

the empirical relation Eq. (3) suggests that the BUM is excited by a parametric four-wave interaction. In two-dimensional105

cylindrical geometry the matching conditions are (Karplyuk et al., 1970; Leyser, 2021)

ω1 +ω3 = ω0 = ω2−ω3 (15)

m1 +m3 =m0 =m2−m3 (16)

where mα is the azimuthal mode number (α= 0, 1, 2, 3). In cylindrical geometry there are no matching conditions on the110

radial wave numbers, krα.

The ponderomotive force F depends on the HF fields Eh. With the electric fields having the time dependence Eα ∝
cos(ωαt), the following terms in F include components that can excite LH oscillations at ω3 according to the matching

condition Eq. (15):

|Eh|2 = E0·E1 +E0·E2 (17)115

The pump field is taken to be left-handed circularly polarized (for which the electric field rotates opposite to the electron gyro

motion),

E0 =
E0√

2
[cos(ω0t)x̂− sin(ω0t)ŷ] (18)
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The EB (α= 1) and UH (α= 2) oscillations are taken to have the potential

Φα =AαJmα
(krαρ) cos(mαϕ+ ∆ϕα) cos(ωαt) (19)120

so that Eα =−∇⊥Φα, Jmα is the Bessel function of the first kind, ρ= (x2+y2)1/2, ϕ is the azimuthal angle in the x–y plane

and ∆ϕα accounts for a possible phase shift between the EB and UH oscillations. With Eqs. (18) and (19) in Eq. (17), an

expression for F in Eq. (9) is obtained.

The largest contribution to v3 in Eq. (8) is the first term on the right-hand side, which is proportional to. E3×Bg. The drift

velocity vD, which has to be provided, is therefore taken to be vD = ED×Bg/Bg, where ED is associated with the beating125

of the HF fields that give contributions at ω3. For the present purpose, ED =−∇⊥ΦD,

ΦD = [A01Jm3
(kr1ρ)cos(m3ϕ) +A02Jm3

(kr2ρ)cos(m3ϕ+ ∆ϕ2)]cos(ω3t)e
−ρ/L (20)

where A01 (A02) is the potential that results from the beating at ω3 of the pump field and EB (UH) oscillations, and is therefore

proportional to the product of E0 and the amplitude A1 (A2) of the EB (UH) oscillations [Eq. (19)]. But it is beyond the scope

of the present treatment to derive a relation between them. The focus here is to study the possible influence of the externally130

provided F and vD on LH dynamics. The last factor in Eq. (20) is used to model the localization of ΦD to LH oscillations in a

cylindrical density depletion, where L is the decay scale length of the potential outside the depletion.

3 Simulation scheme

Solutions to Eqs. (11) and (14) are computed numerically. Hereafter the dimensionless density variables, η3 ≡ n3(t,x,y)/ns

and ηi3 ≡ ni3/ns, will be used. Further, Eq. (14) is of the second order in the time derivative. In order to solve it numerically it135

is converted into two first order equations, by introducing η′i3 ≡ n′i3/ns). This gives the following set of three equations:

∂η3
∂t

=
ω2
p

ω2
uh

η′i3 + (ηi3− η3)νe−
ω2
e

ω2
uh

vD·∇⊥η3 +
1

meω2
uh

∂

∂t
(∇⊥·F ) (21)

∂η′i3
∂t

= ω2
pi(η3− ηi3)− νiη′i3−

∂vD

∂t
·∇⊥ηi3−vD·∇⊥η′i3 (22)

140

∂ηi3
∂t

= η′i3 (23)

To solve Eqs.(21) to (23) numerically they are converted into a system of coupled algebraic equations by replacing η3, ηi3

and η′i3 by corresponding grid functions that are discretized in time t= tj = j∆t (j = 0,1,2, . . . ,J) and on an equidis-

tant spatial grid x= xk = k∆d, y = yl = l∆d (k, l = 0,1,2, . . . ,M ), so that η3(tj ,xk,yl)≈ ηjkl3 , ηi3(tj ,xk,yl)≈ ηjkli3 and

η′i3(tj ,xk,yl)≈ ηjkli3′ (Langtangen and Linge, 2017).145
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The time derivatives of η3, ηi3 and η′i3 are approximated with the forward Euler method for the finite differences, for example,

∂η3/∂t≈ (η
(j+1)kl
3 − ηjkl3 )/∆t. All spatial differences are computed at the time step j. Second-order spatial derivatives are

approximated by centered differencing, for example, ∂2Eαx/∂x2 ≈ (E
j(k+1)l
αx −2Ejklαx +E

j(k−1)l
αx )/∆x2. The first-order spatial

derivatives of η3, ηi3 and η′i3 in the advection terms need a different treatment and are approximated by, so-called, upwind

differencing. For example, in the x-direction with η3, we take ∂η3/∂x≈ (ηjkl3 − η
j(k−1)l
3 )/∆x when vDx > 0 and ∂η3/∂x≈150

(η
j(k+1)l
3 − ηjkl3 )/∆x when vDx < 0. The direction of the differencing is always against the direction of the drift.

The spatial grid is 4.0× 4.0 m with ∆d≈ 0.025 m. The fields are localized around the center of the grid (x,y) = (0,0)

m by multiplication of a factor exp(−ρ/L) with L= 0.4 m. All parameters are zero at the boundaries, ηj0l3 = ηjMl
3 = 0 and

ηjk03 = ηjkM3 = 0, ηj0li3 = ηjMl
i3 = 0 and ηjk0i3 = ηjkMi3 = 0, ηj0li3′ = ηjMl

i3′ = 0 and ηjk0i3′ = ηjkMi3′ = 0.

The time step is ∆t= 2.5×10−7 s. The initial conditions on the spatial grid are taken such that η0kl3 ∝ ΦD(t= 0) in Eq. (20):155

η0kl3 =
N3

(A2
01 +A2

02)1/2
(A01Jm1(kr1ρkl)cos(m1ϕkl) +A02Jm2(kr2ρkl)cos(m2ϕkl + ∆ϕ2))e−ρ/L (24)

where A01 and A02 allow for different relative amplitudes of the EB and UH potentials. Further, η0kli3 = (ω2
uh/ω

2
p)η0kl3 and

η0kli3′ = 0.

4 Simulation results160

As an example, the azimuthal mode numbers of the interacting wave modes are taken to be m0 = 1, m1 =−1 and m2 = 3

which by Eq. (16) gives m3 = 2. In experiments, the transmitted electromagnetic pump wave is approximately a left-handed

circularly polarized plane wave on the small spatial scale-lengths of interest here, propagating near parallel to Bg. However, its

scattering on filamentary density depletions with much smaller spatial scale-lengths transverse to Bg than the electromagnetic

wavelength, can give an azimuthal component of the pump field (Istomin and Leyser, 2003). This is the motivation for why165

m0 = 1 is taken here, which implies that m1 6=m2 for m3 6= 0. Figure 2 shows the initial η0kl3 as given by Eq. (24), in the

center of the simulation plane perpendicular to Bg. The magnitude of N3 = 1.0×10−7 is chosen such that F in the right-hand

side of Eq. (21) has an effect on the temporal evolution for reasonable values of the external amplitudes E0, A1, A2 A01, and

A02.

Figure 3 displays the computed electron and ion densities, ηjkl3 (blue) and ηjkli3 (red), respectively, at (x,y) = (0.0,0.1) m170

for (a) E0 = 0.001 V/m and A01 =A02 = 0.002 V, and (b) E0 = 0.1 V/m and A01 =A02 = 0.2 V, with A1 =A2 = 0.2 V

in both cases. Parameter values typical of the ionospheric F region were used: ωe ≈ 2π× 1.35× 106 s−1, as estimated from

the data from which the spectrum in Fig. 1 was obtained, oxygen ions, ωuh = sωe with s= 4, νe = 500 s−1, νi = 5 s−1 and

the electron temperature Te = 2000 K. The frequencies of the involved wave modes are related by the matching condition

Eq. (15) where for the present treatment ω1 = 4ωe−∆ω1, where ∆ω1 = 2π× 10× 103 s−1. By keeping ω1 constant, kr1175

is constant, while for the small value of ∆ω1 we still have ω0 ≈ 4ωe for the different ω3 to be discussed, In experiments,

ω0 ≈ 4ωe commonly results in the exponential slope of the BUM spectral feature that is of interest here.
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Figure 2. Initial relative electron density distribution η0kl3 for the LH oscillations in the center of the 4× 4-m simulation plane according to

Eq. (24) (N3 = 1.0× 10−7, A01 =A02 = 0.2 V, ∆ϕ2 = π/2). The arrows indicate the direction of the ED ×Bg drift. The dashed lines

delineate η0kl3 = 0 which are separatrices for the drift. The white cross at (x,y) = (0.0,0.1) m marks the position where the time signal and

power spectrum is shown in the subsequent figures. The position is relatively near an initial separatrix of the drift.

In Fig. 3a the external driving due to E0 is weak so that vD and F in Eqs. (21) and (22) are small. The displayed oscillations

are the LH resonance oscillations at about 7.6 kHz that are weakly perturbed by the beating of the HF fields at f3 = 20 kHz in

vD and F . For comparison, a sinusoidal oscillation at f3 is shown in black. The oscillation frequency in Fig. 3a agrees with180

the theoretical value of the LH resonance frequency:

flh =
1

2π

ωpiωe

ωuh
=
(me

mi

)1/2(
1− 1

s2
)1/2

fe ≈ 7.6 kHz (25)

where ωpi = (me/mi)
1/2ωp. The time step in the computations, ∆t= 2.5× 10−7 s, implies ∆tflh ≈ 1.9× 10−3. In Fig. 3b,

E0 is sufficiently strong so that the temporal evolution is instead determined by vD and F . The temporal evolution contains

narrow pulses that are even shorter than the oscillations at the driving frequency f3 illustrated in Fig. 3a.185

Figure 4 displays the temporal evolution (a) of ηjkl3 (blue) and ηjkli3 (red) and the corresponding power spectrum (b) for

the longer time period from t= 0 s to t= 0.0025 s, and the same parameter values as for Fig. 3b. The power spectrum is

approximately exponential as it has a constant slope in the semi-logarithmic plot. The narrow peaks at multiples of f3 = 20

kHz enter through vD and F in Eqs. (21) and (22). The width of the LH spectrum is about 160 kHz which is an order of

magnitude larger than both flh and f3.190
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Figure 3. Temporal evolution of ηjkl3 and ηjkli3 at k, l such that (x,y) = (0.0,0.1) m from 0 s to 0.0005 s (f3 = 20 kHz, ∆ϕ2 = π/2). (a)

E0 = 0.001 V/m, A1 =A2 = 0.2 V and A01 =A02 = 0.002 V. For comparison, shown in black is an oscillation sin(ω3t) at the driving

frequency f3. (b) E0 = 0.1 V/m, A01 =A02 = 0.2 V and other parameter values as for (a).

Figure 4. Temporal evolution (a) and power spectrum (b) of ηjkl3 (ble) and ηjkli3 (red) at (x,y) = (0.0,0.1) m for time between 0 s and

0.0025 s, and the same parameter values as for Fig. 3b.
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In Figs. 5 and 6 some of the narrow pulses in the temporal evolution of ηjkl3 in Fig. 4a are investigated. Figure 5a shows

ηjkl3 from t= 0.0005 s to t= 0.0025 s, which corresponds to a time scale from 0.0005× flh ≈ 4 to 0.0025× flh ≈ 19 wave

periods of LH resonance oscillations. The time period excludes the initial overshoot behavior of ηjkl3 seen in Fig. 4a. The four

pairs of vertical red dashed lines mark the time periods with pulse-type features discussed in Figs. 5b and 5c (t≈ 0.00067

s) and Fig. 6 (t≈ 0.00092, 0.00182 and 0.00214 s). Figure 5b displays an expanded time period marked by the vertical red195

dashed lines at t≈ 0.00067 s, which includes a single negative pulse-type feature in the time series (blue dots) together with

a fitted Lorentzian function according to Eq. (1) (black curve). The width of the Lorentzian pulse is τ ≈ 8.90× 10−6 s so that

τf3 ≈ 0.18 which implies that the temporal pulse is much shorter than the driving wave period (1/f3). The corresponding

scaling frequency is fs = 1/(4πτ)≈ 9 kHz. Figure 5c shows the power spectrum (blue) of the time series in Fig. 5a together

with P (f)∝ exp(−f/fs) (dashed black line). The width τ and corresponding scaling frequency fs of the approximately200

Lorentzian shaped pulse in Fig. 5b corresponds roughly to the slope of the spectrum.

Figure 6 displays three additional pulse-type features in the same time series of ηjkl3 (Figs. 4 and 5a) from the time periods

at (a) t≈ 0.00092 s, (b) t≈ 0.00182 s and (c) t≈ 0.00214 s marked by the three rightmost pairs of red dashed vertical lines

in Fig. 5a. In Fig. 6a the fitted Lorentzian has a width of τ ≈ 6.15× 10−6 s and fs ≈ 13 kHz. In Fig. 6b the fitted Lorentzian

pulse has τ ≈ 7.23×10−6 s and fs ≈ 11 kHz. Most of the pulse-type features in the time series in Fig. 5a have a skewed shape205

and only a few have a reasonably symmetric Lorentzian form. Figure 6c shows an example of a skewed pulse. A Lorentzian

function cannot be reasonably fitted to the pulse. In Fig. 6d the same spectrum as in Fig. 5c is displayed but with the spectral

slopes for the obtained fs of the Lorentzian functions: in (a) fs ≈ 13 kHz (dotted line) and in (b) fs ≈ 11 kHz (dash-dotted

line). The Lorentzian pulse widths are consistent with the slope of the spectrum. As different widths of Lorentzian pulses give

different fs, an observed exponential slope is associated with a temporal evolution containing predominantly Lorentzian pulses210

of approximately equal width, as for Fig. 5b (fs ≈ 9 kHz), Fig. 6a (fs ≈ 13 kHz) and Fig. 6b (fs ≈ 11 kHz).

The width τ of the approximately Lorentzian shaped pulses in the time series ηjkl3 at a given (x,y) depends on the amplitudes

E0,A1,A2,A01 andA02. Figure 7 displays a case withE0 = 0.2 V/m,A01 =A02 = 0.4 V and other parameters as for Figs. 4

to 6 for which E0 = 0.1 V/m and A01 =A02 = 0.2 V . Figure 7a shows the time series at (x,y) = (0.0,0.1) m. The two

pairs of red dashed lines at t≈ 0.00057 s and t≈ 0.00077 s indicate two examples of negative pulse-type signatures that have215

approximately Lorentzian shapes. In Fig. 7b the pulse (blue dots) at t≈ 0.00057 s is displayed together with a fitted Lorentzian

function (black line) with a width corresponding to fs ≈ 13 kHz. In Fig. 7c the pulse (blue dots) at t≈ 0.00077 s is shown

with a fitted Lorentzian function (black line) with a width corresponding to fs ≈ 15 kHz, The associated exponential slopes

agree approximately with that of the power spectrum of the time series as seen in Fig. 7d. The pulse in Fig. 7c with fs ≈ 15

kHz appears to have a slightly better fit to the spectrum. The obtained scaling frequencies of fs ≈ 13 kHz and fs ≈ 15 kHz are220

a few kilohertz higher than those in Figs. 5 and 6 for which fs ≈ 9, 11 and 13 kHz. Stronger driving through E0, A01 and A02

gives a larger drift, vD = ED×Bg/Bg, and thereby narrower pulses with larger fs.
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Figure 5. Fit of a Lorentzian function to a single pulse-type feature in the signal of ηjkl3 for the same time series as in Fig. 4 (f3 = 20

kHz and E0 = 0.1 V/m). (a) Temporal evolution from t= 0.0005 s to t= 0.0025 s and (b) for a single pulse (blue dots). The time

period for the single pulse is marked by the leftmost pair of red vertical dashed lines at t≈ 0.0067 s in (a). The three remaining pairs

of vertical dashed lines indicate the time periods discussed in Fig. 6. The solid black curve in (b) is a fitted Lorentzian pulse of width

τ ≈ 8.90×10−6 s which corresponds to fs ≈ 9 kHz. (c) The power spectrum for the time series in (a). The dashed line shows the exponential

slope P = 10−6 exp(−f/fs).
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Figure 6. Three examples of pulse-type features from the computed time series ηjkl3 (blue dots) in Figs. 4 and 5a and fits of a Lorentzian

function (black lines). (a) Pulse at t≈ 0.00092 s and fitted Lorentzian function with fs ≈ 13 kHz (ηjkl3 was decreased by 0.3× 10−7 to

optimize the fit). (b) Pulse at t≈ 0.00182 s and fs ≈ 11 kHz (ηjkl3 was decreased by 0.6×10−7 to optimize the fit). (c) Pulse at t≈ 0.00214

s. (d) The power spectrum (the same as in Fig. 5c) with the black lines showing the exponential slope P = 10−14 exp(−f/fs) for the pulses

in (a) and (b).
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Figure 7. Lorentzian pulse-type features in the computed time signal of ηjkl3 at (x,y) = (0.0,0.1) m for E0 = 0.2 V/m, A01 =A02 = 0.4

V and other parameter values as for Figs. 4 to 6. (a) Temporal evolution from t= 0.0005 s to t= 0.0025 s. Two pulses are indicated by

the two pairs of red vertical dashed lines. (b) Pulse (blue dots) at t≈ 0.00057 s and fitted Lorentzian function (solid black curve) of width

τ ≈ 6.27× 10−6 s, which corresponds to fs ≈ 13 kHz (ηjkl3 was decreased by 1.2× 10−7 to optimize the fit). (c) Pulse (blue dots) at

t≈ 0.00077 s and fitted Lorentzian function (solid black curve) of width τ ≈ 5.25× 10−6 s, which corresponds to fs ≈ 15 kHz (ηjkl3 was

decreased by 0.9× 10−7 to optimize the fit). (d) The power spectrum for the time series in (a). The black lines show the exponential slope

P = 10−14 exp(−f/fs) for the fs in (b) and (c).
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5 Discussion

Plasma drifts in multi-cell patterns may exhibit deterministic chaos due to topological modulations of the flow (e.g., Shi

et al., 2009; Maggs and Morales, 2011, 2012). The topological modulations result in the formation of narrow temporal pulses225

of Lorentzian shape in the plasma flow. As the power spectrum of a Lorentzian pulse is exponential it follows that if the

Lorentzian pulses in the time signal have approximately the same widths, its spectrum will be exponential. Exponential power

spectra are an inherent characteristic of deterministic chaos.

The BUM feature in the spectrum of electromagnetic emissions stimulated by powerful radio waves in the ionosphere

commonly exhibits an exponential high frequency flank, as shown in Fig. 1. The BUM has been attributed to parametric four-230

wave interaction involving the electromagnetic pump wave, electrostatic EB, UH and LH waves (Huang and Kuo, 1994), with

matching conditions for the high frequency waves that is suggested by the empirical relation Eq. (3). In the theory, the UH

oscillations at ω2 = ω0 +ω3 are assumed to scatter off small scale density irregularities into electromagnetic emissions that

can escape the ionosphere and be detected as the BUM on the ground. Whereas the initial theory by Huang and Kuo (1994)

considered waves in one spatial dimension, the present understanding is that on thermal time scales wave modes perpendicular235

to Bg are localized inside density depletions of small scale striations (Gurevich et al., 1997; Mjølhus, 1997; Istomin and

Leyser, 1998). In two-dimensional geometry perpendicular to Bg, excited localized wave modes will have standing multi-cell

oscillations inside the density depletions.

In the present treatment, results are presented of numerical simulations of relevant nonlinear wave processes. LH oscillations

are modeled by Eqs. (11) and (14) in the plane perpendicular to Bg and excited by nonlinear interactions of the pump, EB and240

UH modes. Specifically, the beating of the pump field with the EB and UH fields enter through the ponderomotive force F

and the drift velocity vD in the advection terms in the equations. Figure 2 shows the initial condition for the electron density

fluctuations η0kl3 . With η0kl3 ∝ ΦD(t= 0), the ED×Bg drift occurs along equipotential lines around extrema in ηjkl3 . Thus,

the direction of the ED×Bg drift changes from clockwise to anti-clockwise, and vice versa in adjacent extrema in ΦD and

ηjkl3 . The resulting separatrices in the ED×Bg drift are illustrated by dashed lines in Fig. 2. Also, the drift changes direction245

with the change of sign of ED every half wave period T3/2 = 1/(2f3).

Figure 3 displays the temporal evolution of the LH electron ηjkl3 (blue) and ion ηjkli3 (red) density fluctuations at (x,y) =

(0.0,0.1) m for (a) E0 = 0.001 V/m and A01 =A02 = 0.002 V and (b) E0 = 0.1 V/m and A01 =A02 = 0.2 V, with f3 = 20

kHz and A1 =A2 = 0.2 V in both cases. In Fig. 3a, ηjkl3 and ηjkli3 oscillate at the LH resonance frequency of 7.6 kHz, which

is lower than f3. Because of the low E0, the external driving through F and vD at f3 is too weak to have a noticeable effect250

on the time dependence. However, in Fig. 3b the temporal evolution is different with pulse-type features occurring seemingly

erratically and some of which are narrower than the driving frequency at f3 indicated by the black curve in Fig. 3a.

Figure 4a, shows the electron ηjkl3 (blue) and ion ηjkli3 (red) oscillations for the same parameter values as in Fig. 3b but for the

longer time period between 0 s and 0.0025 s. As seen in Fig. 4b, the power spectrum of both ηjkl3 and ηjkli3 has an approximately

exponential slope. Figures. 5 and 6, which are for the same time period, show that some of the pulse-type features in the time255

series have close to a Lorentzian shape. The examples in Figs. 5 and 6 give for the fitted Lorentzian functions the scaling
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frequencies fs ≈ 9 kHz, (Fig. 5b), fs ≈ 13 kHz, (Fig. 6b) and fs ≈ 11 kHz, (Fig. 6c), As the obtained fs agree approximately

with the slope of the spectrum it is concluded that the power spectra in Figs. 4b, 5b and 6d are determined by Lorentzian pulses

due to chaotic dynamics and that the Lorentzian pulses have approximately the same widths. In the discussed model, with

the frequency matching conditions in Eq. (15), the spectrum of LH oscillations (ω3) is upshifted to the UH mode according260

to ω2 = ω0 +ω3. The UH oscillations could then scatter off density irregularities of the filamentary density striations into

electromagnetic emissions that can be detected as the BUM in the SEE spectrum on the ground. It is therefore concluded that

the experimentally observed exponential high frequency flank of the BUM emission (Fig. 1) is evidence of deterministic chaos

in wave interactions along the lines in the present simulations.

The temporal evolution is chaotic for E0 = 0.1 V/m (Figs. 3b, 4, 5 and 6) but not for E0 = 0.001 V/m (Fig. 3a). This is265

evidence that a threshold must be exceeded for chaotic time dependence. Because of temporal modulations in the multi-cell

drift trajectories associated with ΦD, plasma may cross separatrices in the ED×Bg drift. Deterministic chaos seems to set

in when the drift is fast enough for plasma to drift sufficiently far to cross a separatrix and move to drift around an adjacent

potential extremum, before the potential changes sign every half wave period and the drift direction reverses.

Whereas some of the pulse-type features in the time series have an approximately Lorentzian form, most of them are asym-270

metric and the later pulse flank is generally steeper than the earlier flank. This asymmetry may indicate nonlinear steepening

of the pulses. A careful look reveals that this is the case too for the reasonably symmetric Lorentzian pulses in Figs. 5 to 7. It is

interesting that the skewness of a Lorentzian pulse does not affect its power spectrum (Maggs and Morales, 2011; Garcia and

Theodorsen, 2018), so that asymmetric Lorentzian pulses contribute to an exponential power spectrum. However, it is not clear

whether some of the skewed pulses observed in the present simulations can actually be considered as skewed Lorentzians. This275

requires further investigations.

Finally, the scaling frequency fs in the present model depends on E0, A01 and A02. Figure 7 shows a case for E0 = 0.2

V/m, A01 =A02 = 0.4 V and other parameter values as for Figs. 4 to 6. The obtained fs for the fitted Lorentzian functions

are typically a few kilohertz higher than for E0 = 0.1 V/m and A01 =A02 = 0.2 V (Figs. 5 and 6). With increasing E0, fs

increases. However, experiments on pump power stepping at the Sura facility suggest that the slope of the BUM high frequency280

flank is independent of the pump power (Wagner et al., 1999, their figure 9). The maximum effective radiated power (ERP)

was about 150 MW and the BUM flank was observed to have similar slopes for the pump power levels −6 dB, −3 dB and

0 dB relative to the maximum ERP.

The present simulation results are not consistent with this experimental result. As seen from Fig. 7, for which fs for the fitted

Lorentzian functions in Figs 7b and 7c are a few kilohertz larger than in Figs. 5 and 6, fs depends on E0, A01 and A02. At this285

stage it may only be speculated on possible reasons for this discrepancy. In the present study only a single density depletion

associated with a single small scale striation is considered. In reality many striations are excited simultaneously. Theories

(Mjølhus, 1983; Gurevich et al., 1995; Hall and Leyser, 2003) and numerical computations (Eliasson and Leyser, 2015) show

that striations are electromagnetically coupled to one another through the electromagnetic Z mode. The question arises whether,

for sufficiently high pump powers, the nonlinear processes of oscillations localized inside a striation are nonlinearly saturated.290

Increasing the pump power may then only result in more striations to be excited. This could account for the higher BUM
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intensity at higher pump power but with fsl that depends on the localized interactions independent of pump power. But this

requires modeling the physics on a global scale with many striations and with nonlinear saturation for the involved oscillations

amplitudes, which is beyond the scope of the present study.

6 Conclusions295

The prominent BUM feature in the spectrum of electromagnetic emissions stimulated by powerful HF radio waves in the

ionosphere, commonly has an exponential high-frequency flank for pump frequencies near a harmonic of the ionospheric

electron gyro frequency. Exponential power spectra have been shown to be a characteristic of deterministic chaos. As the BUM

has been interpreted in terms of parametric four-wave interaction involving the electromagnetic pump field, EB, UH and non-

resonant LH modes (Huang and Kuo, 1994), a simplified two-fluid model of parametrically excited LH oscillations has been300

derived and studied by numerical simulations. The LH oscillations were taken to be localized in a cylindrical density depletion

in the plane perpendicular to a homogeneous and static geomagnetic field. As such, they form cylindrical modes characterized

by the frequency, an azimuthal mode number and radial wave number. The localized LH modes are associated with multi-cell

plasma drift patterns. For sufficiently strong driving fields, the time signal of the LH electron and ion density fluctuations

at a fixed position in the simulation plane exhibit an approximately exponential power spectrum, thereby being evidence of305

deterministic chaos. The exponential spectrum is connected to pulse-type features of Lorentzian form in the time signal.

As the parameter values in the simulations are reasonable to the ionospheric experiments, it is proposed that the observed

exponential flank of the BUM is the result of deterministic chaos in the LH dynamics. According to the model of parametric

interaction for the BUM, the beating of the LH oscillations with the pump field shifts the LH spectrum to the UH mode

at frequencies above the pump frequency where they could be converted to electromagnetic emissions and be observed on310

the ground. In view of the generality of the physics of deterministic chaos, it may be that similar processes can occur in

other regions of space plasma, for example, in ionospheric single- or multi-cell convection that is topologically modulated by

fluctuations in the geomagnetic field.
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