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Abstract. Whistler-mode chorus waves propagate outside the plasmasphere, interacting with energetic electrons in the outer

radiation belt. This leads to local changes in the phase space density distribution due to energy or pitch angle diffusion. The

wave-particle interaction time (Tr) is crucial in estimating time-dependent processes as the energy and pitch angle diffusion.

Although the wave group and particle velocities are a fraction of the speed of light, the kinematics description of the wave-5

particle interaction for relativistic electrons usually considers the relativistic Doppler shift in the resonance condition and

relativistic motion equation. This relativistic kinematics description is incomplete. In this paper, we add to the literature a

complete relativistic description of the problem that relays on the relativistic velocity addition (between the electron and the

wave) and the implications of the different reference frames in the estimates of the interaction time. We use quasi-linear test

particle equations and the special relativity theory applied to whistler-mode chorus waves parallel propagating in cold plasma10

magnetosphere interaction with relativistic electrons. Also, we consider that the resonance occurs in the electron’s reference

frame. At the same time, the result of such interaction and their parameters are measured in the local inertial reference frame

of the satellite. The change pitch angle and the average diffusion coefficient rates are then calculated from the relativistic

interaction time. The interaction time equation is consistent with previous works in the limit of non-relativistic interactions

(Tnr). For the sake of application, we provide the interaction time and average diffusion coefficient Daa for four case studies15

observed during the Van Allen Probes era. Our results show that the interaction time is generally longer when applying the

complete relativistic approach, considering a non-relativistic calculation. From the four case studies, the ratio Tr/Tnr varies

in the range 1.7− 3.0, and Daa/D
nr
aa in the range 1.9 - 5.4. Accurately calculating the interaction time with full consideration

of Special Relativity can enhance the modeling of the electron flux in Earth’s outer radiation belt. Additionally, the change

in pitch angle depends on the time of interaction, and similar discrepancies can be found when the time is calculated with no20

special relativity consideration. The results described here have several implications for modeling relativistic outer radiation
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belt electron flux resulting from the wave-particle interaction. Finally, since we considered only one wave-cycle interaction,

the average result from some interactions can bring more confident results in the final flux modeling.

Copyright statement. TEXT

1 Introduction25

The inner magnetosphere’s outer radiation belt is filled mainly with electrons in a broad energy range, from tens of keV to MeV,

distributed in several pitch angles. In the equatorial region, the loss cone instability (for a detailed description, see Lakhina et

al. (2010) and references therein) caused by the electron’s source population (tens of eV to tens of keV) anisotropy, produce

whistler-mode chorus waves (Tsurutani and Smith, 1974, 1977; Shprits et al., 2007, 2008; Lakhina et al., 2010; Lam et al.,

2010; Tsurutani et al. , 2013). Chorus waves are very low frequency (VLF) (from hundreds of Hz to a few kHz) in whistler30

mode and propagate as discrete wave packets.

In the magnetosphere, the whistler-mode chorus waves can be observed either at low frequency, i.e., 0.1Ωce < ω < 0.5Ωce

(when the emission occurs in frequencies lower than half the electron gyrofrequency (Ωce)) and high frequency ( 0.5Ωce < ω <

0.9Ωce) (Artemyev et al., 2016). At the frequency ω = 0.5Ωce, chorus waves are likely to interact with low-energy electrons

due to Landau resonance, which causes damping (Tsurutani and Smith, 1974; Bortnik et al. , 2006). The wave vector can be35

oriented quasi-parallel to the ambient magnetic field (θ ≤ 45◦) when exhibiting right-handed circularly polarized emission

(Artemyev et al., 2016), or oblique (45◦ < θ ≤ 50◦), and very oblique (θ > 50◦) to the ambient magnetic field (Artemyev

et al., 2016; Hsieh et al., 2020, 2022, and references therein). In the latter case, the electric field is elliptically polarized

(Verkhoglyadova et al., 2010).

Chorus waves are observed outside the plasmasphere, mainly at the dawn side of the magnetosphere. Often, they interact40

with the electrons seed population (hundreds of keV) and accelerate them to MeV energies (Thorne et al., 2005; Tu et al., 2014;

Santolik et al., 2009; Reeves et al., 2003; Reeves et al. , 2013; Jaynes et al. , 2015; Da Silva et al., 2021; Lejosne et al. , 2022;

Hua et al. , 2022) or diffuse in pitch angle scattering (Horne and Thorne, 2003a; Horne et al., 2003b; Alves et al., 2016; Zhang

et al., 2017; Liu et al., 2020; Guo et al., 2021), which may cause electrons to precipitate into the atmosphere. The wave-particle

interaction succeeds when the resonance condition is satisfied, which implies a balance among the wave frequency, electron’s45

energy, plasma density, and ambient magnetic field strength (ωpe/Ωe), as shown by Horne et al. (2003b).

In the magnetosphere, the kinematics description of the wave-particle interaction for relativistic electrons usually considers

the relativistic Doppler shift in the resonance condition (e.g., Thorne et al. 2005, Summers et al. 1998) and the relativistic

motion equation (e.g., Omura, 2021). Often, the resonant kinetic energy of the electrons results from the resonance condition

and the motion equation, together with the wave group velocity (e.g., Omura, Y. , 2021; Hsieh et al., 2022; Summers et al.,50

2012; Glauert and Horne , 2005; Lyons et al., 1972). The wave-particle interaction time (Tr) is a crucial parameter in estimating

time-dependent processes as the energy and pitch angle diffusion coefficients (Walker, 1993; Lakhina et al., 2010; Tsurutani et
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al. , 2013; Hsieh et al., 2020, 2022), however, the relativistic kinematics description mentioned above is incomplete to calculate

this parameter. In this paper, we add to the latter approach a complete relativistic description of the problem: the relativistic

velocity addition (between the electron and the wave) and the implications of the different reference frames in the estimates of55

the change in pitch angle and the diffusion coefficient.

We calculate the parameters for four case studies to give a quantitative comparison between the complete relativistic descrip-

tion and a non-relativistic approach (used here as an approximation to calculate the interaction parameters). The interaction

time is calculated using the test particle equations (Tsurutani and Smith, 1974; Lakhina et al., 2010; Horne et al., 2003b; Bort-

nik et al., 2008) along with the special relativity theory applied to whistler-mode chorus waves propagating in cold plasma60

magnetosphere (where group velocity is 0.3c to 0.5c) and energetic electrons (with energy ∼ 0.1 to 2 MeV). We consider that

the resonance occurs in the electron’s reference frame. At the same time, the result of such interaction and their parameters are

measured in the local inertial reference frame of the satellite.

We considered parallel propagating whistler-mode chorus waves linearly interacting with relativistic electrons to derive first

the group velocity equation, then the resonant relativistic kinetic energy, and finally the interaction time. Thus, we calculate65

the change pitch angle and the diffusion coefficient rates. We use the Van Allen Probes measurement of wave parameters,

ambient magnetic field, density, electron fluxes, and equatorial pitch angle to apply the interaction time equation. A complete

calculation of these parameters can improve relativistic outer radiation belt electron flux variation models.

2 Wave-particle interaction in the Radiation Belt

2.1 Group velocity for parallel and oblique propagation70

The inner magnetosphere plasma density is a fundamental parameter to determine the wave dispersion relation (and group ve-

locity) involved in the Doppler shift cyclotron resonance condition (see density implications to the resonant diffusion surfaces,

e.g., Horne and Thorne, 2003a). Recent space missions have provided density measurement with a confidence level of 10%

under quiet geomagnetic conditions (Zhelavskaya et al., 2016). Outside the plasmasphere, while magnetospheric convection

increases, the plasma density can vary from very low density (∼ 1 cm−3) to increased density values (∼ 50 cm−3). Despite,75

Lakhina et al. (2010); Tsurutani and Lakhina (1997) estimated the change in pitch angle for non-relativistic electrons and

chorus waves, both propagating parallel to the ambient magnetic field in a dense plasma, i.e., X >> Y 2, it is still remaining

an estimate for low-density plasma condition such as observed by recent missions. Several works have shown that plasma

density varies due to the magnetospheric activity under different solar wind drivers (e.g., see discussions at Li et al., 2014;

Sicard-Piet et al., 2014; Allison et al., 2021), leading to an additional difficulty in imposing simplifications in the calculation of80

parameters related to the ambient electron plasma density. In this work, we are interested in whistler-mode chorus waves which

occur in frequencies higher than the ion cyclotron frequency, besides the wave-particle interaction outside the plasmasphere,

the dispersion relation for this case is obtained from the solution of the Appleton-Hartree equation (Bittencourt, 2004). Thus,

the whistler-mode chorus wave group velocity in the magnetosphere is calculated by the solution of the dispersion relation

η(ω) = kc/ω in a cold plasma, neglecting ions contributions85
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η(ω) =

1− X(1−X)

(1−X)− 1
2Y

2 sin2 θ+
√

( 12Y
2 sin2 θ)2 +(1−X)2Y 2 cos2 θ

1/2

, (1)

where X = ω2
pe/ω

2, Y =Ωce/ω, with ωpe is the plasma frequency and θ is the wave normal angle (WNA). The WNA is

defined as the angle between the wave vector k and the ambient magnetic field B0. The positive signal in the square root in the

denominator is chosen because we consider the ordinary right circularly polarized (RCP) wave propagation mode (Helliwell,

1965). We take the derivative of Eq. (1) to evaluate the group velocity (vg ≡ dω/dk) for a given whistler-mode chorus wave90

propagating at a given angle, such that θ can be chosen among parallel, quasi-parallel and oblique classification, related to the

ambient magnetic field in any plasma density

vg
c

=
1

η+ωdη/dω
. (2)

For whistler-mode chorus waves propagating outside plasmapause, where density can vary from ∼ 1 to ∼ 20 cm−3, the usual

high-dense plasma approximation (e.g., see Bittencourt, 2004; Artemyev et al., 2016) is often inconvenient under disturbed95

geomagnetic conditions. Thus, we solve Eq. (2) for low electron density conditions. The wave group velocity and the maximum

wave propagation frequency are significantly lowered as the WNA becomes oblique, as shown in Figure 1 because the ambient

refractive index is not isotropic.

2.2 Wave-particle cyclotron resonance condition

The whistler-mode chorus waves are generated near the geomagnetic equator, where they are often observed propagating at100

frequency ω, parallel to the field lines (Tsurutani and Lakhina, 1997; Santolik et al., 2009; Lakhina et al., 2010). Also, oblique

chorus waves are observed at high latitudes (Omura, Y. , 2021; Artemyev et al., 2016) and can resonantly interact with electrons

elsewhere (Mourenas et al., 2015).

Electrons undergoing a bouncing motion parallel to the magnetic field lines see a relativistic Doppler shift in the wave

frequency from its frame of observation105

ω−k ·ve = n
Ωce

γ(ve)
, (3)

where the vector ve is the electron velocity and γ(ve) = (1− v2e/c
2)−1/2. The resonant cyclotron harmonics are given by the

integer number n, with n= 0 corresponding to the Landau resonance condition. The gyrofrequency low-order harmonics n=

±1,2,3,4,5, ... are often observed for oblique wave vector propagation (Artemyev et al., 2016; Orlova et al., 2012; Subbotin et

al., 2010; Lorentzen et al., 2001). If they are positive, the resonance is said to be normal; otherwise, it is anomalous (Tsurutani110

and Lakhina, 1997). The pitch angle scattering and energy diffusion occur when whistler-mode chorus wave group velocity and

the relativistic electron propagation velocity fulfill the resonance condition in Eq. (3) (Tsurutani and Lakhina, 1997; Shprits et

al., 2008; Lakhina et al., 2010).
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The scalar product in Eq. (3) is calculated for an electron resonant speed and wave propagating in a dispersive media with

phase (group) velocity given by Eq. 1 (2). Henceforth, we consider linear wave-particle interactions, in which parallel whistler-115

mode chorus waves propagate in the same direction to the electron’s velocity vector or opposite to it. From Eq. (3), we can

obtain the electron speed for which the resonant condition is fulfilled in terms of the wave and plasma parameters. We call this

the resonant relativistic electron’s speed

ve
c

=
η cosδ+(nΩce/ω)[η

2 cos2 δ+(n2Ωce
2
/ω2 − 1)]1/2

η2 cos2 δ+n2Ωce
2/ω2

. (4)

In the above equation, δ is the angle between the wave vector and the electron velocity vector. It equals α or π−α for co-120

propagating and counter-propagating waves respectively. The dispersion relation η(ω) is chosen according to the application.

Here we consider the dispersion relation given by Eq. (1). In plasma wave propagation, the electron plasma density is a

determinant parameter in calculating wave group velocity. Though, obtaining wave group velocity from the Appleton-Hartree

solution in this environment can be challenging (Anderson et al., 1992). We use plasma density data from the EMFISIS

instrument (Kletzing et al., 2013) onboard the Van Allen Probes Mission to calculate the wave-particle time of interaction.125

However, a more precise measurement is still challenging. The Van Allen Probes in situ measurements (ambient density,

magnetic field) are used in Eq. (4) to calculate typical values of the resonant kinetic energy

Kres =
mc2√

1− v2e/c
2
−mc2, (5)

of electrons that resonantly interact with the wave frequency in a given plasma condition and wave propagation direction.

The resonance condition allows for different harmonics, represented by n, to fulfill the condition shown in Eq. 3 (see, e.g.,130

Camporeale (2015) for a discussion of resonant interaction). For a matter of example, we choose to solve Eq. 5 for the parallel

whistler-mode chorus waves counter-propagating and co-propagating to the electron’s velocity vector. The equatorial electron

pitch angle in this example is 40◦. In Figure 2, the resonant kinetic energies are calculated for the gyrofrequency harmonic

n=+5, ambient magnetic field B0 = 150 nT, and electron plasma density ne = 2.0 cm−3. From Eq. (4), we can obtain the

equation presented by Summers et al. (2012) if we use their notation1 ve = vR + v⊥.135

3 Relativistic interaction time

The wave-particle interaction holds as the resonance condition prevails; after that, the interaction is ended. Thus, the interaction

time T can be defined as the time elapsed by the resonant electron passing through the wave subelement with duration τ (Hsieh

et al., 2020; Lakhina et al., 2010). Alternatively, one can also define it as the time needed for the phase difference between the

wave and particle to change by 1 rad (Tsurutani and Lakhina, 1997; Walker, 1993). In the following calculations, we consider140

the former definition.

In order to calculate the interaction time, one needs to define two reference frames to work on a relativistic kinematic

scenario. The first one is the satellite frame (S) in which the measurement of the relevant physical quantities (including T )
1In our notation vR = vgc. For further details, see section 3.
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takes place, and the second one is the frame of the electron guiding center (S′) in which the interaction occurs (see Figure 3).

To justify the use of an inertial frame associated with the satellite, consider, for instance, the maximum acceleration achieved145

by the satellite at the perigee (data from satellite orbit can be found, e.g., at Mauk et al. (2013)), it is 8.2 m s−2. The interaction

time between the electron and the wave is of the order of 10−3 s. Since the period of the satellite is 537.1 min, its acceleration

is nearly constant during the interaction. Therefore, the change in the speed of the satellite in its orbit during one interaction

time is around 8.2× 10−3 m/s which is 6 orders of magnitude smaller than the speed of the satellite at the perigee 9,8 km/s.

Similarly, the spin period of the satellite is 11 s (Breneman et al., 2022), which leads to a change in angle of about 1.8 arcmin150

through the interaction time relative to one wave cycle. Thus, for the purposes of the present article, it is reasonable to consider

the satellite as an inertial reference frame during the interaction time relative to one wave cycle. Moreover, it is a standard

approach in the literature to consider the satellite as an inertial reference frame.

The relative velocity between S and S′ is the electron guiding center velocity vgc. The guiding center electron velocity is

related to the electron’s speed by the pitch angle α by the relation vgc = ve cosα. Since vgc is parallel to the ambient magnetic155

field B0, the angle between vgc and the wave vector coincides with the WNA given by θ. In S′ the interaction time can be

written as

T ′ =
L′

v′g
, (6)

where L′ and v′g are the wave subelement’s scale size and the wave’s group velocity in this same frame. If vgc is much smaller

than the speed of light, one can relate the group velocity in both frames v′g and vg simply by the vector addition formula of vg160

and vgc. However, in the general case for which the electrons are relativistic, this is no longer true, and one needs to use the

relativistic formula of the addition of velocities (for a description of the relativistic addition of velocities, see e.g., Chapter 11

in Jackson, J. D. (1999)). Therefore, we have

v′g =

√
v2g + v2gc − 2vgvgc cosθ−

(
vgvgc sinθ

c

)2

1− vgvgc
c2 cosθ

, (7)

where θ is the angle (in the S frame) between vg and vgc.165

Another relativistic effect to consider in the transition from one frame to another is the Lorentz-FitzGerald contraction. If

L0 is the scale size of the wave in its proper reference frame, in the S′ frame, we have

L′ =
L0

γ(v′g)
, (8)

where the Lorentz factor is

γ(v′g) =
1√

1− v′
g
2

c2

. (9)170

In the same fashion, the scale size of the wave in the S frame is

L=
L0

γ(vg)
, (10)
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and after combining the Eqs. (8) and (10) we obtain

L′ =
γ(vg)

γ(v′g)
L. (11)

Notice that if we have, for instance, v′g > vg , the subelement’s wave scale size in the S′ frame is smaller than the scale size175

measured in the satellite frame. The difference between the two sizes is more considerable as the electron’s speed is higher.

Substituting the above equation in Eq. (6) we have

T ′ =
γ(vg)

γ(v′g)
L

v′g
. (12)

Finally, the time dilation effect is the third relativistic kinematic effect. The interaction time in the S frame can be obtained

from the above expression in the S′ frame by multiplying the Eq. (12) by a new Lorentz factor γ(vgc). The final equation is180

T =
γ(vgc)γ(vg)

γ(v′g)
L

v′g
. (13)

Therefore, if we use the Eq. (7) together with the Eq. (13), we obtain the expression of the interaction time with all quantities

measured in the S frame. The final expression contemplates all the relativistic kinematic effects.

Additionally, a comparison of the time of interaction calculated through Eq. (13) with the time calculated without considering

any relativistic correction is shown in Figure 4 for parallel propagating waves and 80◦ pitch angle electrons. According to our185

results, the non-relativistic time is under-estimated even for low-energy electrons. This happens due to the wave group velocity

being very high in the magnetospheric density conditions. Thus the relativistic addition velocity should be considered whatever

the resonant electron energy.

The influence of these three relativistic kinematic effects on the time of interaction can be analyzed by plotting each term in

Eq. (13) as a function of the electron resonant energy or wave frequency (not shown). Regarding the contribution of each term,190

we obtain that the main contribution comes from the L/v′g ratio, which differentiates from the non-relativistic equation by the

relativistic velocity addition (v′g). Moreover, the difference in time due to the γ factor is 20% for parallel wave propagation at

any resonant electron energy, and it becomes more significant at kinetic energy higher than 1 MeV.

4 Case studies: application of interaction time to estimate the change in pitch angle and diffusion coefficient rates

4.1 Calculations of the change in pitch angle and diffusion coefficient rates195

The interaction time derived in the last section is usually longer than that calculated without a more complete relativistic

description, as shown in the example of Figure 4. In this section, we compare the complete relativistic description and the

non-relativistic interaction time, applied to calculate the pitch angle diffusion coefficient (Daa) computed from the change in

pitch angle. The change in pitch angle can be calculated using the test-particle approach as done by Tsurutani and Lakhina

(1997) and later on, Lakhina et al. (2010).200

Let us start with the Lorentz equation

dp

dt
= qe (E+ve ×B) , (14)
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where B is the sum of the wave magnetic field Bw and the ambient magnetic field B0, the wave electric field is E =

(ω/k)Bw× k̂, qe =−e and p= γ(ve)meve are the electron charge and momentum respectively. For the WNA, let us consider

the simple case for which θ = 0. Considering B0 in the +z direction of a local Cartesian coordinate system associated with205

the S frame we have the following components of the Eq. (14)

dpx
dt

= qe

[ω
k
By +(vyB0 − vzBy)

]
, (15)

dpy
dt

= qe

[
−ω

k
Bx − (vxB0 − vzBx)

]
, (16)

210

dpz
dt

= qe(vxBy − vyBx). (17)

The electron momentum can be written as p= p⊥+p∥ where p⊥ ≡ pxî+ py ĵ is the momentum orthogonal to the ambient

magnetic field and p∥ ≡ pz k̂ is parallel to it. Therefore, the pitch angle can be obtained from tanα= p⊥/p∥ and we obtain the

following formula for a small change in α

∆α=
p∥∆p⊥ − p⊥∆p∥

p2
. (18)215

Combining Eqs. (15), (16) and (17) with the above equation, it is straightforward to show that

∆α=
qeBw sinϕ

γ(ve)me

(
ω

k

cosα

ve
− 1

)
∆t, (19)

where ϕ is the angle between the wave magnetic field and the orthogonal component of the electron momentum.

If we further consider a resonant interaction, as given by Eq. (3), we finally obtain a fully relativistic equation for a small

change in the pitch angle due to a wave-particle interaction220

∆α=
Ωce

γ(ve)

Bw

B0
sinϕ

[
ω cos2α

(nΩce/γ(ve)−ω)
+ 1

][
Γ
vg
v′g

]
τ, (20)

where we used the definition Γ≡ γ(vgc)γ(vg)
γ(v′

g)
, Ωce ≡ eB0/me and ∆t= T is the time of interaction given by Eq. (13).

Eq. (20) is in the context of quasi-linear regimes for the calculation of change in pitch angle. It is consistent with the non-

relativistic approach such as equation (3.6) in Kennel and Petschek (1966), equation (11) in Tsurutani and Lakhina (1997), and

equation (11) in Lakhina et al. (2010), which considered the relativistic resonant condition and the non-relativistic equation of225

motion. In the limit for non-relativistic electrons, γ(ve)∼ 1 and Tr equal to ∆t in Kennel and Petschek (1966) and Tsurutani

and Lakhina (1997) or to τ in Lakhina et al. (2010). In addition, Allanson et al. (2022) show the exact equation for pitch

angle scattering and second-order equations for weak turbulence and nonlinear regimes. However, considering the quasi-linear

wave-particle regime, Eq. (20) is similar to Eq. (S3) in Allanson et al. (2022).
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The pitch angle diffusion coefficient (Daa) can be estimated from the change in the pitch angle as (Kennel and Petschek ,230

1966)

Daa =
⟨(∆α)2⟩
2∆t

(21)

To solve Eq. (21), we considered the time duration of a chorus subelement (τ ) is not constant. Santolik et al. (2004), and

after Lakhina et al. (2010) expressed the chorus subelement time duration as a power law distribution, such as τ−β in which

τ can vary from 1 to 100 ms and the power law index vary in a range of 2-3. In the present estimate, we choose a fixed index235

(equal to 2) in the power law. Then, we estimate the average ⟨Daa⟩ from the average ⟨∆α⟩ for four case studies described in

the following.

4.2 Case studies analysis

The ambient magnetic field magnitude (B0), electron plasma density (ne), wave frequency (fw), wave magnetic field maximum

amplitude (Bw), and one wave cycle period (τ ) are the input parameters used in the estimation of resonant kinetic energy (Eq.240

5), the relativistic interaction time (Tr) ( Eq. 13), the change in pitch angle (Eq. 20), and the pitch angle diffusion coefficient

(Daa) (Eq. 21). The inputs and results are summarized in Table 1 for the studied cases 1, 2 (Tu et al., 2014), and 3 and 4 (Liu et

al., 2020; Guo et al., 2021). Besides Tr and Daa calculated using the special relativity theory approach, we compare the results

with a non-relativistic approach for the determinant parameters Tnr and Dnr
aa .

The Van Allen Probes provide in situ measurement from the ambient plasma, relativistic electrons and wave parameters (see245

instrument details at the Appendix). For the four case studies, we plot the time evolution of the radial phase space density (PSD)

profiles at inbound/outbound regions of the probes A or B, that allows the identification of the local relativistic electron loss

and/or local low-energy acceleration (in a given L∗) in the outer radiation belt. These measurements are analyzed concomitant

with whistler-mode chorus wave activities to investigate local contribution of pitch angle diffusion driven by whistler-mode

chorus waves to the electron flux variability. The pitch angle diffusion are due wave-particle interaction. The (anti)parallel250

propagating chorus wave can interacts with relativistic electrons from different energies through at least one wave cycle τ .

The several electrons’ energy are allowed to participate in the interaction because of the harmonic resonant number n on the

left-hand side of Eq. 3 (see Allison et al., 2021, and references therein).

The four case studies are described in a sequence of three figures each. These plots shows the ambient plasma and wave

parameters used in the calculations, and also the PSD analyses. The sequence of plots are described in the following. First,255

Figures 5, (A1 and D1) show from top to bottom, the whistler-mode chorus waves spectrum, the interpolated 1.8 MeV electron

flux pitch angle distribution, the relativistic and low energy electron stacked fluxes, the magnitude of the ambient magnetic

field, and the local plasma density. Second, Figure 6 (B1 and E1) show from panels (b)-(e), respectively the whistler-mode

chorus waves’ ellipticity, planarity, wave normal angle, and the polar angle of Poynting vector. The wave parameters were

calculated according to Santolik et al. (2003) and the ambient electron density was provided according to Zhelavskaya et al.260

(2016). Finally, Figures 7, (C1 and F1) show the time evolution of PSD ([c/(cmMeV ))3sr−1]) as a function of L∗ calculated
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through the magnetic field model (TS04) (Tsyganenko and Sitnov , 2005) for µ= 200 MeV/G and 700 MeV/G. The values

of µ correspond to electron energy of 0.37 and 0.92 MeV, respectively, at L∗ = 5. In these figures we can identify the order

of magnitude, and energy level of the events at the same period when chorus waves are observed. In all the case studies, the

whistler-mode chorus wave events were selected regarding their ellipticity (ϵ∼ 1), planarity of the magnetic field polarization265

(≥ 0.8), wave normal angle (WNA ∼ 0), and Poyinting vector orientation (∼ 0◦ or 180◦). The shaded area in the plots shows

the in situ parameters used in calculations summarized in in Table 1.

In cases 1 (08 October 2012 from 22:00 to 22:30 UT, Figures 5 and 6) and 2 (29 June 2012 at 11:00 UT, Figures A1 and

B1), we consider the plasma parameters measured by the probe A as it closes to the perigee, where the ambient magnetic field

is higher than in the apogee, but the plasma density is low. Under these conditions, the bouncing 1 MeV electrons can interact270

with the 2 kHz whistler-mode chorus waves as they propagate parallel and antiparallel to each other. The chorus subelement

was chosen in case 1 (2) in the instant concomitant with the change in the 57-1800 (1800) keV electron flux energy levels.

To confirm the local variations of the electron flux concomitant with chorus, we analyze the PSD for case 1 (2). Figure 7

shows two significant locally growing electron PSD peaks at L∗ = 4.3 and fixed µ= 200 MeV/G and µ= 700 MeV/G, above

370 keV (see green and magenta curves in panels left and right). A local electron flux decrease between L∗ = 3.9 and 4.3 is275

observed near 06:09 UT on 2012/10/09 for energies close to 0.6 MeV (see the black curve in panel left), while for energies

from above 0.6 MeV is observed a slight electron flux increase (black curve the panel right). Case 2 is shown in Figure C1. It

presents a local loss of electrons from 9:06 UT close to L* = 4.6 and fixed µ = 200 and 700 MeV/G (blue curve in panel left

and right), which can be caused by the pitch angle scattering driven by chorus waves. Curiously, the electron acceleration is

observed from 9:06 UT at L* ≤ 4.2 for both fixed µ, with a major proportion in µ = 700 MeV/G.280

Once the wave-particle interaction is confirmed, we proceed to the calculation of Tr, and thus the Daa, as shown in Table

1. In cases 1 and 2, the relativistic interaction time can be 3 times higher than the non-relativistic calculation, i.e., Tr/Tnr

varies from 1.7 to 3.0. Since the electron plasma frequency ratio is low (2.0≤ ωpe/Ωce ≤ 3.3), the whistler-mode chorus

wave-particle interaction is favored (Horne et al., 2003b), so the Daa reaches up to ∼ 8s−1. According to our calculation, if

the non-relativistic approach is used just for one wave cycle, it may lead Daa to an underestimation of 20%, as obtained for285

the ratio Daa/D
nr
aa calculated for the antiparallel (parallel) case 1 (2).

In cases 3 and 4 (observed on 22 December 2014, shown in the shaded areas in Figure D1 at 02:30 UT and 06:00 UT),

the ambient magnetic field is lower than the previous cases, as the probe A travels to the apogee. The probe A shows a minor

decrease at the 60◦ equatorial pitch angle relativistic outer radiation belt electron flux, concomitant to low intensity chorus

waves detected in the 0.1Ωce < ω < 0.45Ωce (and at ω < 0.1Ωce, in case 4) frequency range. Figure E1 panels (b) and (c),290

show that the waves found a denser magnetosphere (see Table 1), thus the wave group velocity is lowered, compared to the

previous events. The WNA in panel (d) remained close to zero, indicating parallel or antiparallel propagation to the ambient

magnetic field line. Also, the polar angle of the Poynting vector in panel (e) confirm an alternation between anti-parallel

propagation (180◦) in the shaded region for case 3, and quasi-parallel (0◦) propagation in case 4.

Additionally, in Figure F1 the PSD analysis presented shows the local electron flux decrease close to L∗ = 5 (µ= 200295

MeV/G) and L∗ = 4.5 (µ= 700 MeV/G) near 21:42 UT on 2014/12/21 (blue curves in panels a and b). An expressive electron
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flux decrease (more than three orders of magnitude) is observed again near 02:12 UT on 2014/12/22 for energies from 0.37

MeV (green curves in panels a and b). This second electron flux decrease is also discussed in Figure D1.

The ratio Tr/Tnr, in cases 3 and 4 for (anti)parallel propagation, are in the range ∼ 1.7 and 2.6, respectively. Despite these

cases, the wave group velocities being lower than and the electron plasma frequency ratio (ωpe/Ωce ≥ 7) being higher than the300

previous cases, the relativistic approach is an important consideration to improve the diffusion coefficient rates since Daa/Dnr
aa

still significant, reaching ∼ 5 in a case study with a lower wave group velocity.

5 Conclusion

In this article, we consider the kinematics of Special Relativity to derive a consistent formula to calculate the interaction

time equation applied to the wave-particle interaction between whistler-mode chorus waves and high-energy electrons. In305

the magnetosphere, the whistler wave’s group velocity magnitude reaches a fraction of the speed of light. As these waves

propagate, they can interact with high-energy electrons bouncing in the magnetic field lines. This problem pertains to the

domain of Special Relativity, as it involves high magnitudes of velocities in the interactions. Several previous works described

the wave-particle interaction using a quasi-linear theory for propagating waves interacting with non-relativistic (such as Kennel

and Petschek (1966); Walker (1993); Tsurutani and Lakhina (1997)) and relativistic electrons (Hsieh et al. (2022); Lakhina et310

al. (2010); Horne et al. (2003b)). However, relativistic kinematics is not thoroughly described. In this context, we use first-order

solutions such as those done by Lakhina and Tsurutani, 2010 aiming to improve the calculation of the interaction time in a

quasi-linear wave-particle interaction regime.

Through the derivation, we considered that the wave-particle interaction occurs in the electron’s reference frame, and the

change in electron flux pitch angle is measured in the satellite reference frame. Also, the scale factor length contraction and the315

time dilatation effects are considered to relate the parameters from one reference frame to the other, as well as the relativistic

transformation of velocities.

Considering four case studies, we used the equations derived in Sections 2, 3, and 4 to compare the magnitude of the

interaction time and the pitch angle scattering diffusion coefficient calculated with a complete relativistic description and a

non-relativistic approach. Results for this set of events show that the complete relativistic calculation lead to an interaction320

time (Tr) up to 3 times longer than the non-relativistic approach. Furthermore, Daa can be up to 5 times higher when a

complete relativistic approach is used to compute the estimation.

In addition, the interaction time significantly depends on the wave group velocity and the relativistic addition velocity,

besides the initial pitch angle and gyrofrequency harmonic. The main difference we observe using a more complete relativistic

description is that the interaction time is often longer than that calculated with a non-relativistic description; it can be up325

to 3 times longer. Consequently, the diffusion coefficients can be more than 5 times higher compared to a non-relativistic

approach. Regarding the applicability of the results shown here, Eq.s (5), (13) and 21 are consistent with the non-relativistic

approach previously described by (Kennel and Petschek , 1966; Tsurutani and Lakhina, 1997; Lakhina et al., 2010) for wave-

particle interaction in linear regimes. The linear interactions correspond to the most often wave-particle events observed in the
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magnetosphere since, according to Zhang et al., 2018, the weak turbulence in plasma and non-linear events occurrence rates330

is around 10 to 15% considering the average occurrence of whistler-mode chorus waves. Moreover, several difficulties arrive

in calculating the trapping time in non-linear interactions using in situ measurements (e.g., Omura, 2021; Omura et al., 2013;

Omura et al., 2008) since these events have a solution of the wave-particle interaction equation based on, at least, second-order

terms in wave amplitude, e.g., Allanson et al., 2022; Artemyev et al., 2023; Omura, 2021; Osmane et al., 2016; Bortnik et

al., 2008. Despite the limitations of the presented model, our results (i.e., Eq. (13)) can be applied as a first-order approach335

to non-linear regimes (e.g., Hsieh et al., 2021) to estimate the interaction time from in-situ measurements. This estimate is

relevant to determine the energy gain of electrons undergoing a wave-particle interaction (Hsieh et al., 2021), although the

interaction time is known to be shorter than the trapping time (Hsieh et al., 2021; Bortnik et al., 2008).

In summary, accurately calculating the interaction time with full consideration of Special Relativity can enhance the model-

ing of the electron flux in Earth’s outer radiation belt. This approach improves the estimation of wave-particle interaction time340

and pitch angle diffusion coefficient.

Data availability. All the data used are available:

ECT: https://cdaweb.gsfc.nasa.gov/pub/data/rbsp/

EFW: http://themis.ssl.berkeley.edu/data/rbsp/efwcmds/

EMFISIS: https://emfisis.physics.uiowa.edu/Flight/345

Appendix A: Case studies

The instruments onboard the Van Allen Probes measuring the case study parameters are: The Electric and Magnetic Field

Instrument Suite and Integrated Science (EMFISIS) (Kletzing et al., 2013) provides the chorus waves power spectrum den-

sity and other waves parameters. The pitch angle distribution of relativistic electrons is provided by the Relativistic Electron

Proton Telescope (REPT) (Baker et al., 2013) and the low-energy electron flux is measured by Magnetic Electron Ion Spec-350

trometer (MagEIS) (Blake et al., 2013). Also, data from the MagEIS instrument onboard Van Allen Probe B, available at

https://rbspgway.jhuapl.edu/psd. The Electric Field and Waves Instruments (EFW) (Wygant et al., 2013) provide the ambient

magnetic field magnitude.

Cases 1 and 2 are related to the whistler-mode chorus waves magnetic field spectrum, the interpolated 1.8 MeV electron flux

pitch angle distribution, the relativistic and low energy electron fluxes, the ambient magnetic field, and the local plasma density.355

Also, it is shown the whistler-mode chorus waves ellipticity, planarity, WNA – wave Normal angle, and the polar angle of the

Poynting vector. The parameters are taken from the period highlighted in the gray-shaded area. They are used to calculate the

time of interaction and change in pitch angle for the energy of the resonant electrons shown in Table 1.

Also, for cases 1 and 2, we selected some periods of interest to confirm wave-particle interaction takes place during these

events. We show in this section the measurements of the time evolution of phase space density (PSD) radial profiles at fixed360
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first adiabatic invariant, µ=200MeV/G and µ=700MeV/G and second (K=0.11G1/2RE) adiabatic invariant for both inbound

and outbound parts of the RBSP-B orbit.
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Figure 1. Group velocity vg/c as a function of whistler-mode chorus waves frequency to the plasma gyrofrequency for three different wave

normal angles propagation. This group velocity is the full solution of Appleton-Hartree for whistler waves propagating in low-density plasma

media at any orientation. The Van Allen Probes apogee orbit provides plasma parameters used in the calculation, B0 = 150 nT, and low

density n= 2 cm−3.
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Figure 2. Comparison of the electron resonant kinetic energy (keV) as a function of whistler-mode chorus wave frequency normalized by

the electron gyrofrequency propagating parallel and anti-parallel to the ambient magnetic field (B0 = 150nT ). The wave-particle resonance

condition depends on the wave dispersion relation (ω/k), calculated from Eq.2, with n = +5. The vertical lines delimitate the low-band

whistler mode chorus wave frequency correspondent to 0.1fce ≤ f ≤ 0.45fce and the high-band 0.55fce ≤ f ≤ 0.90fce as a fraction of the

electron gyrofrequency. Plasma parameters are the same as used in Figure 1
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Figure 3. Illustration of the two reference frames used in calculating the interaction time in Section 3. The electron guiding center frame of

reference (S′) has a velocity vgc with respect to the satellite frame of reference (S). This velocity parallels the ambient magnetic field B0.

Thus, the angle between the wave vector k and vgc equals the WNA, and it is 0◦ for parallel and 180◦ for antiparallel propagating waves.

Figure 4. Comparison of time of interaction (ms) as a function of electron resonant kinetic energy (keV) calculated using Eq. (13) (dashed

lines) and non-relativistic approach (dotted line) for parallel and anti-parallel wave propagation. Plasma parameters are: Bam = 166 nT,

τ = 1.8 ms, ne = 3.0cm−3
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Figure 5. Case 1. Panels show from top to bottom the whistler-mode chorus waves spectrum, the interpolated 1.8 MeV electron flux pitch

angle distribution, the relativistic and low energy electron fluxes, the ambient magnetic field, and the local plasma density. The parameters

shown in the shaded region were used to calculate the interaction time, change in pitch angle, and diffusion coefficient for the resonant

electrons energy shown in Table 1
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Figure 6. Case 1. Panels show the whistler-mode chorus waves (a) spectrum of the magnetic field, (b) ellipticity; (c) planarity; (d) WNA –

wave Normal angle; (e) the polar angle of Poynting vector. In all panels, the values of 0.1fce (Hz), 0.5fce (Hz), and 0.9fce (Hz) are shown

by the pink, black, and green lines, respectively. The parameters shown the shaded region were used to calculate the interaction time, change

in pitch angle and diffusion coefficient for the resonant electrons energy shown in Table 1
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Figure 7. Case 1. Time evolution of phase space density (PSD [c/(cmMeV ))3sr−1]) radial profiles at fixed first adiabatic invariant, µ= 200

MeV/G (a) and µ= 700 MeV/G (b), and second (K = 0.11G1/2RE) adiabatic invariant for both inbound and outbound parts of the RBSP-

B orbit. Period of analyzes: 08 Oct 2012 from 16:37 UT through the interval of interest.
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Table1. Input parameters used in the Equations of sections 2, 3, and 4 to calculate the chorus wave-particle time of interaction and the pitch

angle diffusion coefficient for cases 1 to 4. Kres = 1 MeV and the initial equatorial pitch angle is 60◦. For each case, the first (second) line

shows results for parallel (antiparallel) propagating wave and electron. The subscript r and nr means relativistic and non-relativistic,

respectively.

Input parameters Results

Cases B0 ne Bw τ Tr Tnr Daa Dnr
aa

[nT] [cm−3] [nT] [ms] [ms] [ms] [s−1] [s−1]

1 234 2.3 0.16 0.2 0.04 0.02 7.87 1.67

0.03 0.01 4.32 0.80

2 166 3.0 0.20 1.80 0.37 0.14 9.1 1.68

0.33 0.14 6.8 2.76

3 112 9.1 0.40 2.0 0.10 0.06 2.09 1.45

0.11 0.06 2.55 1.28

4 86 4.3 0.24 5.0 0.41 0.16 1.95 0.54

0.42 0.16 2.08 0.43

Cases 1 (Tu et al., 2014) - from 8 October 2012 (dropout). Cases 3 and 4 (Liu et al., 2020) - 22

December 2014, 00:00 - 06:00 (UTC)
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Figure A1. Case 2. Panels show from top to bottom the whistler-mode chorus waves spectrum, the interpolated 1.8 MeV electron flux pitch

angle distribution, the relativistic and low energy electron fluxes, the ambient magnetic field, and the local plasma density for the whistler-

mode chorus waves observed on 29 June 2013. The parameters shown in the highlighted area were used to calculate the time of interaction

and change in pitch angle for the energy of the resonant electrons shown in Table 1.
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Figure B1. Case 2. Panels from 29 Jun 2013 show the whistler-mode chorus waves (a) spectrum of the magnetic field, (b) ellipticity; (c)

planarity; (d) WNA – wave Normal angle; (e) the polar angle of Poynting vector. In all panels, the values of 0.1fce (Hz), 0.5fce (Hz), and 0.9

fce (Hz) are shown by the pink, black, and green lines, respectively. The parameters shown from the gray shaded period are used to calculate

the time of interaction and change in pitch angle for the resonant electrons energy shown in Table 1.
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Figure C1. Case 2. Time evolution of phase space density (PSD) radial profiles at fixed first adiabatic invariant, µ= 200MeV/G (a) and

µ= 700MeV/G (b), and second (K = 0.11G1/2RE) adiabatic invariant for both inbound and outbound parts of the RBSP-B orbit. Period

of analyses: 29 Jun 2013 at 04:35:23 UT to 13:37:02 UT.
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Figure D1. Case 3 and 4. Panels show from top to bottom the whistler-mode chorus waves spectrum, the interpolated 1.8 MeV electron flux

pitch angle distribution, the relativistic and low energy electron fluxes, the ambient magnetic field, and the local plasma density observed on

21-22 December 2014. The parameters shown in the highlighted area were used to calculate the time of interaction and change in pitch angle

for the energy of the resonant electrons shown in Table 1.
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Figure E1. Case 3 and 4. Same as Figure B1 for 21-22 December 2014
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Figure F1. Same as Figure C1 for both inbound and outbound parts of the RBSP-B orbit in the period of analyses: 21 Dec 2014 at 17:11:17

UT to 22 Dec 2014 at 02:12:54 UT.
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Figure G1. The high-resolution magnetic field measurement related to the event on 08 Oct 2012. A similar plot was made for the other three

studied events. The figure identifies the maximum instantaneous wave magnetic field amplitude Bw and the one wave cycle period τ . .
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