
Concerning the detection of electromagnetic knot structures in space
plasmas using the wave telescope technique
Simon Toepfer1, Karl-Heinz Glassmeier2,3, and Uwe Motschmann1

1Institut für Theoretische Physik, Technische Universität Braunschweig, Braunschweig, Germany
2Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
3Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany

Correspondence: Simon Toepfer (s.toepfer@tu-braunschweig.de)

Abstract.

The wave telescope technique is broadly established in the analysis of spacecraft data and serves as a bridge between local

measurements and the global picture of spatial structures. The technique is originally based on plane waves and has been

extended to spherical waves, phase shifted waves as well as planetary magnetic field representation. The goal of the present

study is the extension of the wave telescope technique using electromagnetic knot structures as a basis. As the knots are an5

exact solution of Maxwell’s equations they open the door for a new modeling and interpretation of magnetospheric structures,

such as plasmoids.

1 Introduction

The classification and mathematical modeling of spatial structures is one of the major missions of theoretical physics. Espe-

cially our extraterrestrial space environment provides a diversity of spatial structures with different characteristics. For exam-10

ple, oscillating structures can be classified into plane waves (e.g., MHD-waves), spherical waves generated at the bow shock,

surface waves triggered by instabilities at the magnetopause as well as phase shifted waves caused by field line resonances

(Plaschke et al., 2008; Narita et al., 2022). On the other hand, global planetary magnetic fields can be interpreted in terms

of a multipole series, based on spherical harmonics (Gauss, 1839; Glassmeier and Tsurutani, 2014; Toepfer et al., 2020a, b,

2021). For the characterization of such structures, empirical models, such as magnetospheric models or models based on a set15

of specific basis functions spanning the solution-space of differential equations, are required.

In general, any spatial structure can be expanded into a set of mathematical basis functions, such as plane waves or spherical

harmonics. Plane waves are the simplest spatial structures forming a basis for the representation of spatial fields. The contribu-

tion of any plane wave with its characteristic spatial scale to the total field is described by the spectrum of the field. However,20

in the worst case, infinitely many elements forming the basis have to be incorporated for describing the structure, resulting in

an infinite set of expansion coefficients that have to be determined from the measurements. In this case, it is desirable to choose

a new representation based on a new set of basis functions that are well-adjusted to the symmetry of the structure with fewer
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unknown parameters.

25

Electromagnetic knots, proposed by Cameron (2018), are a special superposition of infinitely many plane waves, forming

such a new basis set for localized, divergence-free structures, namely the electromagnetic ring and the electromagnetic globule.

The geometry of these basis elements is depicted in Fig. (1a) and (1b). A variety of electromagnetic field topologies can be

constructed by spatially distributing and superposing several rings and globules as illustrated in Fig. (1c). The complexity of

the emerging field geometries prompts the naming electromagnetic knots (Cameron, 2018).30

(a) electromagnetic ring (b) electromagnetic globule (c) superposed globules

Figure 1. Vector representation of the electromagnetic ring (a), the electromagnetic globule (b) and spatially distributed, superposed globules

(c) after Cameron (2018).

The electromagnetic ring and the electromagnetic globule are an exact solution of Maxwell’s equations and provide a new

tool in the context of plasma physical and electrodynamical modeling. Based on the elaboration of Cameron (2018), the

mathematical foundations of electromagnetic knots are revisited in the present study. Within this context, the formalism is

reformulated in terms of the classical wave telescope technique (Motschmann et al., 1996). Additionally, the applicability of

describing and interpreting spatial structures in planetary magnetospheres via knots is discussed. The wave telescope technique35

enables the classification of spatial structures in planetary magnetospheres from a limited number of satellite positions and has

successfully been applied to several problems in space physics (Glassmeier et al., 2001; Narita et al., 2003, 2009, 2013, 2022).

Originally, the method is based on a plane wave representation and was later extended to spherical waves (Contantinescu et al.,

2006), phase shifted waves (Plaschke et al., 2008) and planetary magnetic fields (Narita, 2019; Toepfer et al., 2020a, b). The

goal of the present study is the extension of the zoo of spatial structures that can be analyzed from a limited set of measurement40

positions by considering the electromagnetic knots as a new basis set for the wave telescope. The method is tested against

synthetically generated magnetic field data describing a plasmoid as a two-dimensional magnetic ring structure.
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2 The classical wave telescope

Maxwell’s equations represent a set of coupled partial differential equations for the magnetic field B(x,t) and the electric

E(x,t), respectively. These equations can be transformed into a set of algebraic equations via the Fourier transform. In the45

following discussion we will focus on the magnetic field.

The measurement position x and the measured fieldB(x,t) are known from a set of magnetometer measurements. Due to the

high temporal resolution of the magnetometer, the temporal Fourier transform can be applied to the data, delivering the spectral

amplitude B(x,ω) (Motschmann et al., 1996). In general, this spectral amplitude is a continous function of ω. However, in the50

practical application outstanding points of the spectrum, for example sharp maxima, are of major interest. Thus, the data are

evaluated at a peak, where ω = ω0, with the corresponding amplitude B(x,ω0). So far, the magnetic field can be written as

B(x,ω0) =
∫
B̂0(k,ω0)eik·xd3k, (1)

where B̂0(k,ω0) is the spectral amplitude of the magnetic field with respect to the wave vector k. As the magnetic field mea-

surements are solely available at a limited number of measurement points, the spatial Fourier transform is not applicable. Thus,55

the spectral amplitudes B̂0(k,ω0) and the corresponding wave vectors k are to be determined by the data fitting procedure. Al-

though there is a variety of inversion techniques available (Haykin, 2014, e.g.), we will focus on the wave telescope technique

(Motschmann et al., 1996).

Suppose, that the magnetic field vector B(x,ω0) is measured at N positions xi (i= 1, . . . ,N ), summarized into the 3N -60

dimensional vector B(ω0). Thus, the determination of the spectral amplitude B̂0(k,ω0) results in an overdetermined inversion

problem. Following Motschmann et al. (1996), Narita (2019) and Toepfer et al. (2020b), the magnetic field model can be

rewritten as

B(ω0) =
∫
H(k)B̂0(k,ω0)d3k, (2)

where65

H(k) =




Ieik·x1

...

Ieik·xN


 ∈ R3N×3 (3)

is the shape matrix and I ∈ R3×3 denotes the identity matrix. The magnetic field measurements can be arranged into the data

covariance matrix

M = 〈B(ω0) ◦B(ω0)〉 ∈ R3N×3N ,

where the angular brackets denote the statistical average of the data. The spectrum of the wave can be estimated via70

P (k) = tr
{[
H†M−1H

]−1
}

(4)
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where the dagger † denotes the Hermitian conjugate and tr
{[
H†M−1H

]−1
}

is the trace of the matrix
[
H†M−1H

]−1

. The

maximum values of P (k) may be interpreted as the spectrum of the field. If only a finite number of sharp peaks emerges, the

magnetic field may be interpreted as a superposition of plane waves with discrete k-values. As P (k) is a non-linear function

of the vector k, the whole three-dimensional k-space needs to be scanned for identifying the peaks (Motschmann et al., 1996).75

3 Electromagnetic knots

The classical wave telescope technique does not assume any symmetry or relation between different k-vectors of the spectrum.

However, to be able to use electromagnetic knots as a system of basis structures, the geometry of the k-space needs to be

specialized. In this respect, the classical wave telescope technique differs from its extension presented here. The following

mathematical derivation of electromagnetic knots is based on Cameron (2018).80

3.1 Construction of the knots

For the specific evaluation of the integral in Eq. (1), spherical coordinates (k,ϕ,θ) in the k-space are introduced

k = k




sinθ cosϕ

sinθ sinϕ

cosθ


=: kek, (5)

where the corresponding unit vectors are given by

ek = sinθ cosϕex + sinθ sinϕey + cosθez85

eϕ =−sinϕex + cosϕey

eθ = cosθ cosϕex + cosθ sinϕey − sinθez.

The vectors ex, ey and ez denote the unit vectors of the cartesian coordinate system.
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In this case, the magnetic field in Eq. (1) can be rewritten as90

B(x,ω0) =
∫
B̂0(k,ω0)eik·xd3k

=
∫
B̂0(k,θ,ϕ,ω0)eikek·xd3k

=

∞∫

0

2π∫

0

π∫

0

B̂0(k,θ,ϕ,ω0)eikek·x k2 sinθdθdϕdk

=

∞∫

0





2π∫

0

π∫

0

B̂0(k,θ,ϕ,ω0)eikek·x sinθdθdϕ



 k2 dk

=

∞∫

0

b̃(k,ω0,x)k2 dk, (6)95

where

b̃(k,ω0,x) =

2π∫

0

π∫

0

B̂0(k,θ,ϕ,ω0)eikek·x sinθdθdϕ (7)

is the spectral amount of the field corresponding to k.

Due to Maxwell’s equations, the magnetic field (as well as the electric field in the absence of free charge carriers) is100

solenoidal

∂x ·B(x,t) = 0 (8)

such that

B̂0(k,θ,ϕ,ω0) · ek = 0. (9)

To guarantee the solenoidality of the magnetic field, the ansatz105

B̂0(k,θ,ϕ,ω0) = α(k,ϕ,θ,ω0)eϕ +β(k,ϕ,θ,ω0)eθ (10)

is chosen, which results in

b̃(k,ω0,x) =

2π∫

0

π∫

0

[
α(k,ϕ,θ,ω0)eϕ +β(k,ϕ,θ,ω0)eθ

]
eikek·x sinθdθdϕ, (11)

as well as

B(x,ω0) =

∞∫

0

2π∫

0

π∫

0

[
α(k,ϕ,θ,ω0)eϕ +β(k,ϕ,θ,ω0)eθ

]
eikek·x sinθdθdϕk2 dk, (12)110
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where α(k,ϕ,θ,ω0) and β(k,ϕ,θ,ω0) are complex functions of (k,ϕ,θ) and ω0. In the following this ansatz is specified by

constraining the geometry of the three dimensional k-space.

Equation (11) represents the spectral amplitude of the magnetic field for a fixed value of k. Thus, it is useful to separate the

angular dependency (ϕ,θ) of the spectral amplitude from the k-dependency by choosing the functions α und β as115

α(k,ϕ,θ,ω0) = α′(ϕ,θ,ω0)
B0

2π
K(k)
k2

(13)

β(k,ϕ,θ,ω0) = β′(ϕ,θ,ω0)
B0

2π
K(k)
k2

, (14)

where K(k) is a function of k alone, α′(ϕ,θ,ω0) and β′(ϕ,θ,ω0) are complex functions of (ϕ,θ,ω0) and B0 is a real constant.

120

In this respect, the spectral amplitude (Eq. 11) can be rewritten as

b̃(k,ω0,x) =
B0

2π

2π∫

0

π∫

0

[
α′(ϕ,θ)eϕ +β′(ϕ,θ)eθ

]
eikek·x sinθdθdϕ

K(k)
k2

, (15)

where the functions α′(ϕ,θ) and β′(ϕ,θ) weight the summation over the k-space with respect to the angulars ϕ and θ. Intro-

ducing the abbreviation

B̃(k,ω0,x) =
B0

2π

2π∫

0

π∫

0

[
α′(ϕ,θ)eϕ +β′(ϕ,θ)eθ

]
eikek·x sinθdθdϕ (16)125

provides

b̃(k,ω0,x) = B̃(k,ω0,x)
K(k)
k2

, (17)

such that

B(x,ω0) =

∞∫

0

B̃(k,ω0,x)K(k)dk. (18)

In the following, the functions α′(ϕ,θ) and β′(ϕ,θ) are specified, to evaluate the spectral amplitude B̃(k,ω0,x) with regard to130

electromagnetic knots (Cameron, 2018).

Each spectral amount (corresponding to a fixed k-value) of the field may be characterized by a superposition of plane waves

with the same amplitude propagating in every direction (independent of ϕ and θ), such that

α′(ϕ,θ) = α′0 = const. ∈ C, β′(ϕ,θ) = β′0 = const. ∈ C. (19)135
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In this case, the spectral amplitude results in

B̃(k,ω0,x) =
B0

2π

2π∫

0

π∫

0

[
α′0 eϕ +β′0 eθ

]
eikek·x sinθdθdϕ, (20)

representing a superposition of infinitely many plane waves of the same amplitude with the spectrum

Sk =
{
k ∈ R3 |k2

x + k2
y + k2

z = k2
}
. (21)

Therefore, the distribution in k-space is completely characterized by the value k.140

Using the definitions of the unit vectors eϕ and eθ, the magnetic field can be further expanded into the form

B̃(k,ω0,x) =
B0

2π

{
α′0

2π∫

0

π∫

0

[
−sinϕex + cosϕey

]
eikek·x sinθdθdϕ

+β′0

2π∫

0

π∫

0

[
cosθ cosϕex + cosθ sinϕey − sinθez

]
eikek·x sinθdθdϕ

}

=
B0

2π

{
ex

2π∫

0

π∫

0

(−α′0 sinϕ+β′0 cosθ cosϕ) eikek·x sinθdθdϕ145

+ ey

2π∫

0

π∫

0

(α′0 cosϕ+β′0 cosθ sinϕ) eikek·x sinθdθdϕ

−β′0 ez
2π∫

0

π∫

0

sin2 θeikek·xdθdϕ
}
. (22)

For the evaluation of the integrals in Eq. (22) it is useful to introduce a cylindrical coordinate system (ρ,φ,z) in the position

space

x=




ρcosφ

ρsinφ

z


= ρeρ + z ez, (23)150

where ρ=
√
x2 + y2. The corresponding unit vectors are given by

eρ = cosφex + sinφey

eφ =−sinφex + cosφey

ez = ez.
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The scalar product of the k-vector and the position vector results in155

ek ·x= ρcosφcosϕsinθ+ ρsinφsinϕsinθ+ z cosθ

= ρsinθ(cosφcosϕ+ sinφsinϕ) + z cosθ. (24)

Using x= ρcosφ and y = ρsinφ, provides

ek ·x= sinθ(xcosϕ+ y sinϕ) + z cosθ (25)

For the further evaluation of the integrals in each component of Eq. (22), the abbreviations160

η1(θ) := k0xsinθ and η2(θ) := k0y sinθ

are introduced. By means of these preparations, the ϕ-integration can be solved analytically, delivering the Bessel functions of

the first kind

Jn(x) =
1

2π

π∫

−π

ei(nτ−xsinτ) dτ.

The detailed evaluation of the integrals can be found in the appendix, resulting in165

B̃(k,ω0,x) = Re
{
B0

[
iα′0f eφ +β′0

(
g eρ +hez

)]}
, (26)

and

B(x,ω0) =

∞∫

0

B̃(k,ω0,x)K(k)dk =

∞∫

0

Re
{
B0

[
iα′0f(x,k)eφ +β′0

(
g(x,k)eρ +h(x,k)ez

)]}
K(k)dk, (27)

where

f(x,k) :=

π∫

0

sinθ cos(kz cosθ)J1(kρsinθ)dθ170

g(x,k) :=−
π∫

0

sinθ cosθ sin(kz cosθ)J1(kρsinθ)dθ

and

h(x,k) :=−
π∫

0

sin2 θ cos(kz cosθ)J0(kρsinθ)dθ.

The complex constants α′0 and β′0 are the free parameters of the magnetic field in Eq. (26) and can be chosen independently of

each other. The first part of the field175

B̃r(k,ω0,x) := Re
{
B0iα

′
0f eφ

}
or Br(x,ω0) =

∞∫

0

Re
{
B0iα

′
0f eφ

}
K(k)dk, (28)
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that corresponds to the expansion coefficient α′0, is called the magnetic ring (cf. Fig. 1a). The second part

B̃g(k,ω0,x) := Re
{
B0β

′
0

(
g eρ +hez

)}
or Bg(x,ω0) =

∞∫

0

Re
{
B0β

′
0

(
g eρ +hez

)}
K(k)dk, (29)

corresponding to the expansion coefficient β′0, is the magnetic globule (cf. Fig. 1b). Thus, the magnetic ring and the magnetic

globule can be interpreted as a set of basis functions for localized, divergence-free structures.180
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3.2 Electric field

The electric and the magnetic field, respectively, are connected via Ampère’s law. Under the absence of Ohmic currents,

Ampère’s law reduces to

∂x×B(x,t) =
1
c2ph

∂tE(x,t), (30)

where cph is the phase velocity. Fourier transformation provides185

ik×B(x,ω) =−i ω
c2ph

E(x,ω). (31)

Using k = kek, yields

ek ×B(x,ω) =− ω

kc2ph
E(x,ω), (32)

such that

E(x,ω) =−
kc2ph
ω

ek ×B(x,ω). (33)190

Ampère’s law is valid for every k-vector that contributes to the spectrum of the field, yielding the ansatz

Ẽ(k,ω,x) =−
kc2ph
ω

ek × B̃(k,ω,x). (34)

Using

ek × eϕ =−eθ and ek × eθ = eϕ,

delivers195

Ẽ(k,ω,x) =−
kc2ph
ω

B0

2π

2π∫

0

π∫

0

[
β′0 eϕ−α′0 eθ

]
eikek·x sinθdθdϕ (35)

such that the real part can be expressed as

Ẽ(k,ω,x) =−
kc2ph
ω

Re
{
B0

[
iβ′0f(x,k)eφ−α′0

(
g(x,k)eρ +h(x,k)ez

)]}
. (36)

Thus, the electric field is given by

E(x,ω0) =−
∞∫

0

kc2ph
ω0

Re
{
B0

[
iβ′0f(x,k)eφ−α′0

(
g(x,k)eρ +h(x,k)ez

)]}
K(k)dk. (37)200
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3.3 Electric current density

When Ohmic currents j(x,t) 6= 0 are present, Ampère’s law can be written as

∂x×B(x,t) = µ0j(x,t), (38)

under the assumption of stationarity or if the displacement current is negligible. Again, Fourier transformation provides

ik×B(x,ω) = µ0j(x,ω), (39)205

such that

j̃(k,ω,x) = i
k

µ0
ek × B̃(k,ω,x) (40)

In analogy to the electric field, the current density can be calculated via

j(x,ω0) =

∞∫

0

k

µ0
Re
{
iB0

[
iβ′0f(x,k)eφ−α′0

(
g(x,k)eρ +h(x,k)ez

)]}
K(k)dk. (41)

Thus, the current density of the magnetic ring follows the topology of a globule and vice versa.210

3.4 Spatially distributed knot structures

Within the derivation of the knot structures, the magnetic ring and the magnetic globule are defined with respect to the same

origin of the cylindrical coordinate system (ρ,φ,z). The resulting structures are also known as (electro-)magnetic disturbances

of the first kind (Cameron, 2018). However, in general the structures can be defined with respect to different (local) coordinate

systems, spanned by the local unit vectors (eρq
,eφq

,ezq
), where q = 1, . . . ,Q, with different originsOq . The resulting structures215

B(x,ω0) =

∞∫

0

Re

{
B0

Q∑

q=1

[
iα′0qf(xq,k)eφq

+β′0q
(
g(xq,k)eρq

+h(xq,k)ezq

)]}
K(k)dk (42)

with

xq =Oq + ρq eρq
+ zq ezq

are a superposition of Q translated and/or rotated (electro-)magnetic disturbances of the first kind (cf. Fig. 1c) and are also220

called (electro-)magnetic disturbances of the second kind (Cameron, 2018). The field is characterized by 8Q free parameters,

i.e., the expansion coefficients α′0q and β′0q , the origins Oq as well as the orientation of the local coordinate system that can be

described for example via Euler angles (Cameron, 2018).
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3.5 Discussion of the knot structures

Within the above presented derivation, the spectral distribution of the field with respect to k is controlled by the function K(k).225

Electromagnetic knots, as originally described by Cameron (2018) are superpositions of infinitely many, monochromatic plane

waves, i.e., K(k) = δ(k− k0), with the same amplitude, propagating in every direction with the spectrum

Sk0 =
{
k ∈ R3 |k2

x + k2
y + k2

z = k2
0

}
. (43)

In contrast to single plane waves, knots are localized structures, similar to wave packages. The localization of the structures

results from the spatial distribution of the wave phases230

F(θ,ϕ) := ek ·x= sinθ (xcosϕ+ y sinϕ) + z cosθ. (44)

Thus, the knots are a superposition of plane waves with different phases F(θ,ϕ) at all points in space despite its central point.

At the origin of the structure (x= y = z = 0) the phases of the waves are all equal: F(θ,ϕ) = 0, resulting in a constructive

interference with a maximum amplitude at the central point. The scale size of the knot is determined by k0, representing a set

of infinitely many k-vectors with the same length. The superposition of the plane waves is schematically illustrated in Fig. (2)235

λ0

λ0

ez

eρ

eφ

z

x

y

x

Figure 2. Illustration of superposed, monochromatic plane wave fronts (gray lines) with the wave length λ0 = 2π/k0. The knots are localized

in the origin of the red coordinate system spanned by the vectors eρ, eφ and ez .

Equation (27) represents the magnetic with respect to the position vector x an the frequency ω0. However, the spatial structure

of the field can also directly be analyzed from the measurement data B(x,t) evaluated at different time steps t and thus, no

Fourier transform with respect to time is required.
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4 Extension of the wave telescope240

Following this short derivation and discussion of the electromagnetic knots, the knot model needs to be reformulated in terms

of the wave telescope technique for estimating the spectrum of the knots.

4.1 Reformulation of the model

After performing the temporal Fourier transform, the magnetic field (Eq. 27), measured at the position xi, i= 1, . . . ,N , can be

rewritten as245

B(xi,ω0) =

∞∫

0

B̃(k,ω0,xi)K(k)dk =

∞∫

0

Re



Hi

(k)


 B̂0(k,ω0)iα′0

B̂0(k,ω0)β′0





K(k)dk, (45)

where

H
i
(k) =




−f(xi,k)sinφ g(xi,k)cosφ

f(xi,k)cosφ g(xi,k)sinφ

0 h(xi,k)


 (46)

is the corresponding shape matrix of the position xi. Summarizing the measurements into a 3N -dimensional vector B(ω0), the

magnetic field can be rearranged as250

B(ω0) =

∞∫

0

Re



H(k)


 B̂0(k,ω0)iα′0

B̂0(k,ω0)β′0





K(k)dk, (47)

where

H(k) :=




H
1
(k)
...

H
N

(k)


 ∈ R3N×2. (48)

Again, the determination of the amplitudes α′0 B̂0(k,ω0) and β′0 B̂0(k,ω0) results in an overdetermined inversion problem. In

analogy to the classical wave telescope technique, the spectrum of the ring can be estimated via255

P (k) = tr
{[
H†M−1H

]−1
}
. (49)

Since P (k) is a non-linear function of k, the whole k-space has to be scanned for estimating the spectrum of the field

(Motschmann et al., 1996).

Solely considering the magnetic ring (Eq. 28), the shape matrix transfers onto the shape vector (Narita, 2019, cf.)260

hr(k) := f(x,k)eφ =




−f(x,k)sinφ

f(x,k)cosφ

0


 . (50)

13

https://doi.org/10.5194/angeo-2023-4
Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



In this case, the spectrum of the ring can be estimated via

Pr(k) =
1

h†r(k)M−1hr(k)
. (51)

4.2 Application to plasmoids

For the first application of electromagnetic knots in the context of magnetospheric structures, we consider the modeling of265

plasmoids via a magnetic ring (Zhang et al., 2013, cf.). Plasmoids are a consequence of magnetic reconnection in the far tail

region of a planetary magnetosphere triggered by the Dungey cycle (McPherron, 1995, e.g.). The structures are characterized

by a magnetic ring along the neutral sheet line with a length scale of the order of the solar wind’s obstacle (McPherron, 1995;

Zong et al., 2004, e.g.).

270

We model the magnetic field in the tail region by superposing a stationary magnetic ring (α′0 =−i, Eq. 28)

Br(x,ω0 = 0) =

∞∫

0

Re
{
B0iα

′
0f(x,k)eφ

}
δ(k− k0)dk = Re

{
B0iα

′
0f(x,k0)eφ

}
=B0hr(k0) (52)

composed of monochromatic plane waves, representing the plasmoid, with the field generated by the neutral sheet current

(Harris neutral sheet, Harris (1962)), such that

B(x) =Br(x,ω0 = 0)−Bs tanh
( y
L

)
ex =B0hr(x,k0)−Bs tanh

( y
L

)
ex, (53)275

where the x-axis points towards the night side magnetosphere, the y-axis points from the southern geographic pole to the north-

ern geographic pole and the z-axis completes the right-handed system. Thus, we model the plasmoid as a two-dimensional

structure in the x-y-plane (Zhang et al., 2013, cf.). The value B0 represents an arbitrary chosen background amplitude, Bs =

0.3B0 and the length scale of the current sheet is chosen to L= 10−3RE, where RE is the planetary radius, e.g., the terres-

trial radius. The characteristic length scale of the plasmoid is chosen to λ0 = 1.5RE, corresponding to k0 = 2π/λ0 ≈ 4.19R−1
E .280

The resulting magnetic field data are evaluated at N = 7 synthetically generated spacecraft positions, representing an

HelioSwarm-like configuration (Klein and Spence, 2021). As plasmoids are highly dynamical, travelling structures, the mea-

surement positions are shifted along the x-axis with respect to the origin of the plasmoid (left, mean, right), representing

different time steps. The length scale λ0 (or equivalently k0) of the plasmoid is estimated from the virtual spacecraft data via285

Eq. (51). The resulting field geometry (blue arrows) and the measurement positions (red dots) as well es the corresponding

spectra are illustrated in Fig. (3).

When the measurement positions are distributed around the origin of the plasmoid (mean), the implemented value of k0 can

be reconstructed with high precision from the data. In the other cases, the spatial length scale is slightly overestimated and290
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the relative error results in about 6% (left) and 4% (right), respectively. Thus, the wave telescope technique is capable of (1)

seperating the plasmoid from the neutral sheet part and (2) of estimating the characteristic length scale of the plasmoid from a

limited number of measurement positions.

In analogy to the classical wave telescope technique, the accuracy of the reconstruction depends of the relation between the295

plasmoid’s length scale λ0 and the mean distance d between the spacecraft positions (Narita et al., 2022, e.g.). For example, if

d� λ0, the measurement positions do not properly cover the spatial extend of the plasmoid, resulting in ambiguities within the

reconstruction procedure. In the case of d� λ0, the magnetic field structure of the plasmoid is not detectable. Thus, the mean

distance between the spacecraft positions has to be of the order of the plasmoid’s spatial scale d∼ λ0, which will be realized

by the configuration of the planned HelioSwarm multiscale mission.300
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Figure 3. Reconstructed spectrum Pr(k) resulting from different measurement positions (red dots) with respect to the origin of the plasmoid.

The length scale of the plasmoid is chosen to k0 ≈ 4.19R−1
E .
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4.3 Further applications

The above presented application of electromagnetic knots indicates the potential of the representation. Spatially distributed

electromagnetic knots as described by Cameron (2018) enable the modeling of more complex structures, provide generalized

spectral information, and open the door for further applications, delivering an alternative interpretation of magnetospheric

structures. For example, the magnetic field configuration resulting from a field-aligned current can be modelled as a superpo-305

sition of magnetic rings stacked on top of each other. Due to Ampère’s law, the corresponding current density is given as a

superposition of globules. Thus, the inner structure of field-aligned currents can be analyzed directly from the magnetic field

measurements (Toepfer et al., 2021, cf.). Also, the current system of Alfvén wings can be described as a superposition of rings

(Vernisse et al., 2018, e.g.), so that the corresponding magnetic field topology follows the structure of superposed globules.

Furthermore, field line resonances (Glassmeier et al., 1999; Plaschke et al., 2008) may be described as a special superposition310

of magnetic rings.
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5 Conclusions

Electromagnetic knots are a superposition of infinitely many, monochromatic plane waves with a spherical symmetric spec-

trum and represent an exact solution of Maxwell’s equation. The resulting basis elements, i.e., the electromagnetic ring and the

globule, form a basis set for localized, divergence-free spatial structures. For this reason, the concept of electromagnetic knots315

opens the door for a completely new description and interpretation of spatial structures in planetary magnetospheres.

The classification of spatial structures evaluated at a limited number of measurement points describes an overdetermined

inversion problem. The wave telescope technique serves as a robust data analysis tool for the global interpretation of spacecraft

measurements in terms of expected physical structures. By reformulating the formalism of electromagnetic knots in terms of320

the wave telescope technique, we extended the zoo of spatial structures that can be analyzed by the method. In this sense, the

present study can be interpreted as a generalization of the wave telescope technique to a structure telescope technique.

For a first validation, the concept of electromagnetic knots has been applied to the modeling of a plasmoid. Using a

HelioSwarm-like satellite configuration the wave telescope technique is capable of separating the plasmoid, modelled as a325

magnetic ring, from the field generated by the neutral sheet current and enables the estimation of the length scale of the ring.

Thus, the presented extension of the wave telescope technique serves as a new data analysis tool for multi-spacecraft mis-

sions, such as the planned HelioSwarm mission. However, the application of electromagnetic knots for characterizing further

structures, such as field-aligned currents or Alfvén wings should be analyzed in future studies. In general, we conclude that

the modified wave telescope technique outlined here, bears the potential for a new representation and physical description of330

complex spatial structures existing in space plasmas.
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Appendix A: Evaluation of the integrals

The x-component of the magnetic field in Eq. (22) can be rewritten as

2π∫

0

π∫

0

(−α′0 sinϕ+β′0 cosθ cosϕ) eikek·x sinθdθdϕ

=

π∫

0

sinθeikz cosθ

2π∫

0

(−α′0 sinϕ+β′0 cosθ cosϕ) ei(kxcosϕ+ky sinϕ)sinθ dϕdθ335

=−α′0
π∫

0

sinθeikz cosθ

2π∫

0

sinϕeiη1 cosϕeiη2 sinϕdϕdθ

+β′0

π∫

0

sinθ cosθeikz cosθ

2π∫

0

cosϕeiη1 cosϕeiη2 sinϕdϕdθ

=−α′0
π∫

0

sinθeikz cosθ I1(θ)dθ+β′0

π∫

0

sinθ cosθeikz cosθ I2(θ)dθ (A1)

where

I1(θ) :=

2π∫

0

sinϕeiη1 cosϕ eiη2 sinϕdϕ (A2)340

and

I2(θ) :=

2π∫

0

cosϕeiη1 cosϕ eiη2 sinϕdϕ. (A3)

Analogously, the y-component in Eq. (22) results in

2π∫

0

π∫

0

(α′0 cosϕ+β′0 cosθ sinϕ) eikek·x sinθdθdϕ

=

π∫

0

sinθeikz cosθ

2π∫

0

(α′0 cosϕ+β′0 cosθ sinϕ)eiη1 cosϕ eiη2 sinϕdϕdθ345

= α′0

π∫

0

sinθeikz cosθ

2π∫

0

cosϕeiη1 cosϕ eiη2 sinϕdϕdθ

+β′0

π∫

0

sinθ cosθeikz cosθ

2π∫

0

sinϕeiη1 cosϕ eiη2 sinϕdϕdθ

= α′0

π∫

0

sinθeikz cosθ I2(θ)dθ+β′0

π∫

0

sinθ cosθeikz cosθ I1(θ)dθ (A4)
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as well as

−β′0
2π∫

0

π∫

0

sin2 θeikek·xdθdϕ=−β′0
π∫

0

sin2 θeikz cosθ

2π∫

0

eiη1 cosϕ eiη2 sinϕdϕdθ350

=−β′0
π∫

0

sin2 θeikz cosθ I3(θ)dθ (A5)

for the z-component in Eq. (22), where

I3(θ) :=

2π∫

0

eiη1 cosϕ eiη2 sinϕdϕ. (A6)

So far the magnetic field is given by

B̃(k,ω0,x) =
B0

2π

{

−α′0

π∫

0

sinθeikz cosθ I1(θ)dθ+β′0

π∫

0

sinθ cosθeikz cosθ I2(θ)dθ


 ex355

+


α′0

π∫

0

sinθeikz cosθ I2(θ)dθ+β′0

π∫

0

sinθ cosθeikz cosθ I1(θ)dθ


 ey

−β′0
π∫

0

sin2 θeikz cosθ I3(θ)dθez
}

=
B0

2π

{
α′0


−

π∫

0

sinθeikz cosθ I1(θ)dθex +

π∫

0

sinθeikz cosθ I2(θ)dθey




+β′0




π∫

0

sinθ cosθeikz cosθ I2(θ)dθex +

π∫

0

sinθ cosθeikz cosθ I1(θ)dθey




−β′0
π∫

0

sin2 θeikz cosθ I3(θ)dθez
}
. (A7)360

At least, the remaining integrals I1(θ), I2(θ) and I3(θ) have to be evaluated.

For the evaluation of the integral

I3(θ) =

2π∫

0

eiη1 cosϕ eiη2 sinϕdϕ=

2π∫

0

ei(η1 cosϕ+η2 sinϕ) dϕ (A8)

we define365

tanγ0 :=
η2
η1
,
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such that

sinγ0 =
η2√
η2
1 + η2

2

as well as

cosγ0 =
η1√
η2
1 + η2

2

.370

Thus, the argument of the complex exponential can be rewritten as

η1 cosϕ+ η2 sinϕ=
√
η2
1 + η2

2

(
η1√
η2
1 + η2

2

cosϕ+
η2√
η2
1 + η2

2

sinϕ

)

=
√
η2
1 + η2

2 (cosγ0 cosϕ+ sinγ0 sinϕ)

=
√
η2
1 + η2

2 sin(ϕ+ γ0). (A9)

Substituting τ := ϕ+ γ0 +π and using sin(ϕ+ γ0) = sin(τ −π) =−sinτ , delivers375

I3(θ) =

π+γ0∫

−π+γ0

e−i
√
η2
1+η2

2 sinτ dτ. (A10)

As the integrand is a 2π-periodic function, the integral is independent of γ0, so that

I3(θ) =

π+γ0∫

−π+γ0

e−i
√
η2
1+η2

2 sinτ dτ =

π∫

−π

e−i
√
η2
1+η2

2 sinτ dτ. (A11)

Making use of the definition of the Bessel functions of the first kind

Jn(x) =
1

2π

π∫

−π

ei(nτ−xsinτ) dτ380

yields

I3(θ) = 2πJ0(
√
η2
1 + η2

2) = 2πJ0(kρsinθ). (A12)

The integral

I1(θ) =

2π∫

0

sinϕeiη1 cosϕ eiη2 sinϕdϕ (A13)

can be evaluated using the identity385

∂η2e
iη2 sinϕ = isinϕeiη2 sinϕ (A14)
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so that

sinϕeiη2 sinϕ =−i∂η2eiη2 sinϕ

and results in

I1(θ) =−i∂η2
2π∫

0

eiη1 cosϕ eiη2 sinϕdϕ390

=−2πi∂η2J0(
√
η2
1 + η2

2)

=−2πi
η2√
η2
1 + η2

2

J ′0(
√
η2
1 + η2

2)

=−2πisinφJ ′0(
√
η2
1 + η2

2) (A15)

by means of Eq. (A12). Using

J ′0(x) =−J1(x), (A16)395

delivers

I1(θ) = 2πisinφJ1(kρsinθ). (A17)

Analogously, the integral

I2(θ) =

2π∫

0

cosϕeiη1 cosϕ eiη2 sinϕdϕ (A18)

can be evaluated using400

∂η1e
iη1 cosϕ = icosϕeiη1 sinϕ (A19)

such that

cosϕeiη1 cosϕ =−i∂η1eiη1 cosϕ (A20)

and results in

I2(θ) =−i∂η1
2π∫

0

eiη1 cosϕ eiη2 sinϕdϕ405

=−2πi∂η1J0(
√
η2
1 + η2

2)

=−2πi
η1√
η2
1 + η2

2

J ′0(
√
η2
1 + η2

2)

= 2πi
η1√
η2
1 + η2

2

J1(
√
η2
1 + η2

2)

= 2πicosφJ1(kρsinθ) (A21)
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Therefore, the magnetic field is given by410

B̃(k,ω0,x) =B0

{
iα′0
[
− sinφ

π∫

0

sinθeikz cosθJ1(kρsinθ)dθex

+ cosφ

π∫

0

sinθeikz cosθJ1(kρsinθ)dθey
]

+β′0
[
icosφ

π∫

0

sinθ cosθeikz cosθJ1(kρsinθ)dθex

+ isinφ

π∫

0

sinθ cosθeikz cosθJ1(kρsinθ)dθey
]

−β′0
π∫

0

sin2 θeikz cosθJ0(kρsinθ)dθez
}

415

=B0

{
iα′0

π∫

0

sinθeikz cosθJ1(kρsinθ)dθeφ

+β′0i

π∫

0

sinθ cosθeikz cosθJ1(kρsinθ)dθeρ

−β′0
π∫

0

sin2 θeikz cosθJ0(kρsinθ)dθez
}
. (A22)

The remaining integrals can be expanded into the form

Φ : =

π∫

0

sinθeikz cosθJ1(kρsinθ)dθ420

=

π∫

0

sinθ cos(kz cosθ)J1(kρsinθ)dθ+ i

π∫

0

sinθ sin(kz cosθ)J1(kρsinθ)dθ (A23)

Γ : = i

π∫

0

sinθ cosθeikz cosθJ1(kρsinθ)dθ

=−
π∫

0

sinθ cosθ sin(kz cosθ)J1(kρsinθ)dθ+ i

π∫

0

sinθ cosθ cos(kz cosθ)J1(kρsinθ)dθ (A24)
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and

Ξ : =

π∫

0

sin2 θeikz cosθJ0(kρsinθ)dθ425

=

π∫

0

sin2 θ cos(kz cosθ)J0(kρsinθ)dθ+ i

π∫

0

sin2 θ sin(kz cosθ)J0(kρsinθ)dθ. (A25)

Introducing the transformation

θ̃ = θ− π

2
or equivalently θ = θ̃+

π

2

such that

sinθ = sin
(
θ̃+

π

2

)
= cos θ̃430

and

cosθ = cos
(
θ̃+

π

2

)
=−sin θ̃,

shows that the integrands of the imaginary parts are symmetric functions with respect to the value θ̃ = 0 in the interval θ̃ ∈
[
−π2 , π2

]
, so that

ImΦ =

π/2∫

−π/2

cos θ̃ sin(−kz sin θ̃)J1(kρcos θ̃)dθ̃ = 0 (A26)435

ImΓ =

π/2∫

−π/2

cos θ̃(−sin θ̃) cos(kz(−sin θ̃))J1(kρcos θ̃)dθ̃ = 0 (A27)

ImΞ =

π/2∫

−π/2

cos2 θ̃ sin(kz(−sin θ̃))J0(kρcos θ̃)dθ̃ = 0, (A28)

whereas the real parts do not vanish in general, as illustrated in Fig. (A1). Thus, introducing the abbreviations

f(x,k) := Re





π∫

0

sinθeikz cosθJ1(kρsinθ)dθ



=

π∫

0

sinθ cos(kz cosθ)J1(kρsinθ)dθ (A29)

g(x,k) := Re



i

π∫

0

sinθ cosθeikz cosθJ1(kρsinθ)dθ



=−

π∫

0

sinθ cosθ sin(kz cosθ)J1(kρsinθ)dθ (A30)440

and

h(x,k) :=−Re





π∫

0

sin2 θeikz cosθJ0(kρsinθ)dθ



=−

π∫

0

sin2 θ cos(kz cosθ)J0(kρsinθ)dθ, (A31)
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the measurable part (i.e., the real part) of the magnetic field can finally be written as

B̃(k,ω0,x) = Re
{
B0

[
iα′0f eφ +β′0

(
g eρ +hez

)]}
. (A32)

Re

Im

In
te

gr
an

d
of

Φ

π
2

π

Re
Im

Figure A1. Real (blue) and imaginary part (orange) of the integrand of Φ in the interval θ ∈ [0,π].
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