

1	Are drivers of northern lights in the ionosphere?
2	
3	Office Geophysik, Ogoori, 838-0141, Japan
4	Osuke Saka
5	saka.o@nifty.com
6	
7	
8	
9	
10	Abstract
11	It is reported that transverse electric fields penetrating the ionosphere either from distant
12	space or from the upper atmosphere produce charge separations along the field lines by
13	building up positive charges immediately above the ionosphere. Those parallel electric
14	fields produced by the charge separation deserve auroral driver. This paper discusses why
15	and how these internal drivers in the polar ionosphere are applied for the formation of spiral
16	auroras in the dusk sector.
17	
18	
19	1. Introduction
20	Known as northern lights, spiral auroras with scale size from 1 km to several hundred km in
21	the polar ionosphere are distinct features of substorms. These auroras are classified as
22	discrete auroras generated by energetic electrons accelerated along the field lines. To
23	explain these spiral patterns, two models are proposed according to rotational direction of
24	the spirals, counterclockwise or clockwise viewed along the field lines. One is a current
25	sheet model of auroras where current sheets originating in the magnetosphere twist along
26	the field lines to show winding auroras at ionospheric altitudes [Hallinan, 1976; Partamies
27	et al., 2001; Keiling et al., 2009]. Spirals are counterclockwise viewed along the field lines
28	In the upward field aligned current region. The second is a charge sheet model where
29 20	negative charge excess in the ionosphere causes spirals rotating clockwise, opposite to the
3U 21	current sneet model [Hallinan and Davis, 1970; Oguti, 1974]. The second model seems to
31 22	their feethrint. To receive this economic periods: the ispect basis injection economic is
32 32	applied [Sake_2022]
33 34	appileu [Jaka, 2023].
54	

35

36 2. Quasi-neutral equilibrium solutions of the parallel electric fields (steady-state

37 approximation)

- 38 Figure 1 shows vertical profiles of electrostatic potential generated above the ionosphere 39 by the narrow negative charge sheet. The charge sheet is due to local 40 accumulation/rarefaction of electric charges in the E-layer produced by external electric 41 fields penetrating the polar ionosphere [Saka, 2021]. The vertical component of electric 42 fields generated by the negative charge sheet displaced the mirror height of electrons to 43 higher altitudes, causing a buildup of positive charges immediately above the ionosphere 44 and negative charges in the magnetosphere [Saka, 2023]. Such charge separations along 45 the field lines produced parallel electric fields. On the ground, those potential variations in 46 the ionosphere may be observed as a change of atmospheric electric field in the global 47 current circuit of the ionosphere-atmosphere-earth system [Tinsley et al., 1998]. 48 49 Parallel electric fields influence temperature anisotropy of particles by changing their pitch-50 angle. Disparity in temperature anisotropy between species sustains steady-state parallel 51 electric fields as quasi-neutral equilibrium solutions [Alfven and Falthammar, 1963; 52 Persson, 1963, 1966]. For the case of upward electric fields, perpendicular temperature 53 anisotropy of electrons ($T_{e\perp} > T_{e\prime\prime}$) exceeds that of ions at any point of B. Upward electric 54 fields thus produced by a narrow negative charge sheet constitute 1-D inverted-V above 55 the ionosphere (Figure 2). Generation of upward electric fields above the negative charge 56 sheet is analogous to a battery connected in series to a negative electrode in the 57 ionosphere. 58 59 The parallel electric fields may persist until charge separation along field lines is discharged 60 due to reduction of perpendicular temperature anisotropy of electrons by pitch-angle diffusion of electrons [Kennel and Petschek, 1966]. Discharge may occur locally and 61 62 intermittently accompanying auroral precipitation. Such correlations are reported in the 63 paper titled "Hiss emitting auroral activity" [Oguti, 1975a]. Flux tube filling perpendicular 64 temperature anisotropy of electrons corresponds to area in polar ionosphere having higher 65 occurrence probability of aurora. Those areas are a part of auroral oval. If expansion speeds of the discharge in the flux tube remain much the same after onset, the lifetime of 66 67 the spiral auroras is linearly proportional to the scale size of the flux tube, shorter for 68 smaller size and longer for larger size. According to Oguti (1975b), expansion speeds 69 range in 6-8 km/s independent of their scale size from 1 km to 1000 km. Parallel electric
- 70 fields vanish when perpendicular temperature anisotropy of electrons become equal to that
- 71 of ions at any point of B.

2

- 72
- 73

74 **3. Clockwise spirals**

- 75 We apply this ionospheric driver scenario to explain typical spiral auroras winding clockwise
- 76 in the dusk sector. Those are known as "S-shaped structure" [Oguti, 1975b]. First, we
- 77 assume precipitating electrons due to a discharge produced narrow sheet (1-D) of ion
- 78 holes at the footprint of inverted-V potential. Because longitudinal extent of the ion hole is
- 79 limited, electric fields converging in the center of the sheet develop along the sheet. Figure
- 3 depicts amplitude profiles of electrostatic potential (Φ), electric fields (E), and density
- 81 difference between ions and electrons $(n_i n_e)$ in the ion hole. X denotes a distance from
- 82 the center of the hole. Amplitudes of Φ , E, $n_i n_e$, and distance X are in arbitrary scale.
- 83 The ion hole (-40 < X < 40) is composed of electron rich regions $(n_e > n_i)$ in -27 < X < 27
- and ion walls $(n_i > n_e)$ peaked at X = -37, 37. Total charges of ions and electrons are
- balanced. The profile of the density difference $(n_i n_a)$ is integrated with X to calculate
- 86 electric fields and electrostatic potentials. It is assumed that this potential structure was
- 87 retained for some time (~ 1 min), because ion holes are continuously produced by the
- 88 discharge.
- 89

90 A winding motion of auroral sheet is caused by the space charge fields in the ion hole 91 through ExB drift. The sequence of activities is believed to include: (1) exit motion of 92 inverted-V potentials followed drift motion of auroral sheet, (2) one dimensional potential 93 profile of ion hole in Figure 3 is conserved during the winding motion, and (3) ion rich 94 region appears at the edge of the ion hole to maintain charge balance. The results are 95 shown in Figure 4 in which auroral sheet rotated clockwise around the center viewed in a 96 direction parallel to the background field lines. Auroral sheet developed expanding in length 97 during rotation and left folding pattern at the center. Clockwise motions at the center 98 reproduce "Curls" of charge sheet [Hallinan and Davis, 1970] or "Trailing rotation" [Figure 99 2b in Oquti, 1974]. A clockwise flapping motion of narrow auroral sheet may correspond to 100 the "Flame-structure formation" in a rotation of the flame trains [Figure 5 in Oguti, 1975b], 101 "Clockwise turning-over" in the process of poleward expansion of aurora [Figure 2 in Oguti, 102 1981], and "Splitting-fold over deformation" of a discrete arc in small-scale [Figure 3 in 103 Oguti, 1981]. Figure 5 depicts twist motion of the auroral sheet in a background arc. The 104 rotating arc in the background yields characteristic deformations referred to as "Splitting 105 followed by rotational unfolding" of a discrete arc [Figure 1 in Oguti, 1978].

106	
107	
108	4. Summary and discussion
109	Because of rotational symmetry deformation of small- and large-scale S-shaped spirals at a
110	constant speed (6~8 km/s), it has been suggested that common physical processes may
111	explain the deforming processes involved [Oguti, 1975b]. The internal processes of the
112	polar ionosphere referred to as ionospheric injection partly correspond to common physical
113	processes.
114	
115	Required conditions for this ionospheric driver scenario generating substorm auroras are
116	the ionosphere itself as well as transverse electric fields, originating either from distant
117	space (field line dipolarization) or from the upper atmosphere (neutral winds). The
118	ionospheric driver scenario proposed can accordingly be applied to any planets in the Solar
119	system.
120	
121	It is shown that auroral deformations starting with a splitting of the auroral arc that are
122	referred to as S-shaped structures can be adequately explained by the ionospheric driver
123	scenario. However, an ionospheric driver scenario may not be equally applicable to spiral
124	auroras starting with a folding of the auroral arc (current sheet model). In that case, a
125	magnetospheric driver scenario may be appropriate. Developed spiral forms are identical in
126	both scenarios. To distinguish between the two scenarios in substorm auroras, deformation
127	processes should be carefully examined to determine whether spiral auroras start with a
128	folding of the auroral arc or a splitting of the auroral arc (Figure 6).
129	
130	
131	5. Data availability
132	No data sets were used in this article.
133	
134	
135	6. Competing interest
136	The author declares that there is no conflict of interest.
137	
138	
139	
140	
141	

142	References
143	
144	Alfven, H. and Falthammar, CG.: Cosmical Electrodynamics, 2 nd Edn., Oxford University
145	Press, New York, 1963.
146	Hallinan, T.J.: Auroral spirals 2. Theory, J. Geophys. Res., 81, 3959-3965, 1976.
147	Hallinan, T.J., & Davis, T.N.: Small-scale auroral arc distortions. Planet Space Sci., 18,
148	1735-1744, 1970.
149	Keiling, A., Angelopoulos, V., Weygand, J.M., Amm, O., Spanswick, E., Donovan, E.,
150	Mende, S. McFadden, J., Larson, D., Glassmeier, KH., and Auster H.U.: THEMIS
151	ground-space observations during the development of auroral spirals, Ann. Geophys.,
152	27, 4317-432, 2009.
153	Kennel, C.F., and Petschek, H.E.: Limit of stably trapped particle fluxes, J. Geophys. Res.,
154	71, 1-28, 1966.
155	Oguti, T.: Rotational deformations and related drift motions of auroral arcs, J. Geophys.
156	Res., 79, 3861-3865, 1974.
157	Oguti, T.: Hiss emitting auroral activity, J. Atmos. Terr. Phys., 37, 761-768, 1975a.
158	Oguti, T., Similarity between global auroral deformations in DAPP photographs and small
159	scale deformations observed by a TV camera, J. Atomos. Terr. Phys., 37 , 1413-1418,
160	1975b.
161	Oguti, T.: Observations of rapid auroral fluctuations, J. Geomag. Geoelectr., 30 , 299-314,
162	1978.
163	Oguti, T.: TV observations of auroral arcs, AGU Geophysical Monograph Series, Vol 25
164	(Physics of auroral arc formation), 31-41, 1981.
165	Partamies, N., Freeman, M.P., and Kauristie, K.; On the winding of auroral spirals:
166	Interhemispheric observations and Hallinan's theory revisited, J. Geophys. Res., 106,
167	28913-28924, 2001.
168	Persson, H.: Electric field along a magnetic line of force in a low-density plasma, Physics
169	Fluids, 6, 1756-1759, 1963.
170	Persson, H.: Electric field parallel to the magnetic field in a low-density plasma, Physics
171	Fluids, 9, 1090-1098, 1966.
172	Saka, O.: Ionospheric control of space weather, Ann. Geophys., 39, 455-460, 2021.
173	Saka, O.: Parallel electric fields produced by ionospheric injection, Ann. Geophys., 41, 369-
1/4	373, 2023.
175	Insiey, B.A., Liu, W., Konrbaugh, K.P., and Kirkland, M.W.: South Pole electric field
1/0	responses to overnead ionospheric convection, J. Geophys. Res., 103, 26137-26146,
1//	1330.

5

178	
179	
180	
181	
182	Figure captions
183	
184	Figure 1
185	Electrostatic potentials produced in vertical planes (X-Y, Z=0) and (X-Z, Y=0) by negative
186	charge sheet in the ionosphere (Y-Z plane). Scales are arbitrary. Potential increases
187	radially outward from the center of the sheet or with altitudes (X). The sheet is narrow in Z,
188	10% of Y. Green bars denote extent of negative charge sheet in Y (upper panel) and in Z
189	(lower panel). Vertical component of the electric fields produces positive charge
190	immediately above the ionosphere.
191	
192	Figure 2
193	Inverted-V (battery) connected in series directly to the ionosphere (negative electrode).
194	lonospheric potential beneath the inverted-V is assumed to be negative, and 0 volt in the
195	surroundings. Inverted-V potential is consisted of steady-state parallel electric fields.
196	Auroral precipitations are due to discharge of the steady-state parallel electric fields,
197	occurring locally and intermittently in the inverted-V. Precipitations create ion holes in the
198	ionosphere (see Figure 3).
199	
200	Figure 3
201	One dimensional ion hole in X represents auroral sheet. The ion hole model is applied to
202	the auroral sheets independent of their scale size. Electric field profile marked by dotted
203	arrow is used in Figure 4 to show a twist motion of the auroral sheet.
204	
205	Figure 4
206	Clockwise rotation of auroral sheet. The auroral sheet initially in the east-west directions in
207	black (T=0) deformed to red (T= Δt)), green (T= $2\Delta t$), blue (T= 3Δ), and to purple (T= $4\Delta t$) in
208	X-Y plane. X is east and Y is north. These motions were caused by the space charge fields
209	in the ion hole through $E_{\perp} imes B$ drift.
210	
211	Figure 5
212	Rotating motion of auroral sheet in background arc. Auroral sheet is marked in Black in the

 $213\,$ $\,$ pre-existing background auroral arc (Light Cyan). Auroras are void in the white area

- 214 removed by the rotating exit. Background arc was split while the exit rotated clockwise from
- 215 (A) to (B). Unfolding deformation follows (C) through (E) and is finally released in (F), and
- 216 (G). Sequence of the auroral sheet deformations from split of background arc, pleat
- 217 unfolding, and its release referred to as "Splitting-unfolding deformation of auroral pleat"
- 218 are illustrated in the right-bottom corner [adapted from Oguti, 1975b].
- 219
- Figure 6
- 221 (A) Deformation of spiral auroras starting with splitting of auroral sheet. (B) Deformation of
- 222 spiral auroras starting with folding. Initial auroral forms associated with splitting and folding
- 223 are shown in red. In (A), auroral sheet twists clockwise viewed in a direction parallel to the
- 224 field lines. In (B), auroral sheet rotates counterclockwise. Developed auroral sheets in blue
- 225 are identical for (A) and (B).

Figure 1

Figure 2

Figure 3

Figure 4

Figure 6