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Thank you again for your suggestions and comments, which we find very helpful for improving the manuscript.
The lining number mentioned in this Response To Reviewers refers to the updated manuscript with tracking.

I. RESPONSE TO REVIEWER 1

RC1: ’Comment on angeo-2023-30’, Anonymous Referee #1, 10 Nov 2023
General comments
This paper discusses the solution of the least-squares system that stems from a multi-dimensional Taylor series

approximation of a scalar field. The authors foresee the inclusion of the time dimension in their analysis. The paper
does a nice job of pointing out the opportunities and some of the difficulties of applying such least-squares gradient
computation techniques to situations where a larger number of spacecraft is available and/or where one attempts to
assess the higher-than-linear gradients. The existence conditions are interpreted in a geometric way, which is helpful.
The paper contains new ideas and is at the forefront of research.

The paper is well-structured. There is a good overview of the relevant literature. The paper also puts the work
properly into context. The conclusions are clear. The paper length is appropriate.

I have a few suggestions for improving the presentation of the material and I also have a few questions, see specific
comments below.

There are several language and typographical issues in the manuscript; see technical corrections listed below. The
paper would benefit from being thoroughly reread once more.

The paper will likely be suitable for publication after minor revision.
Reply: We thank the reviewer for these constructive comments. We will carefully review the paper and address

any technical issues to the best of our ability.
Specific comments
The authors discuss the weighted least-squares problem that arises when trying to fit a polynomial approximation

to the observations of a scalar field at multiple points. This is, in general, an overdetermined problem. The solution
of such a problem is well-known standard numerical mathematics: There is the theory of the “generalized inverse” of
an overdetermined system and the use of the singular value decomposition to solve the system. None of that math,
however, is referred to explicitly in the paper, while the paper reflects that math in the specific context of gradient
computation. For instance, matrix (26) shows the singular value decomposition of the original matrix, which in the
case discussed here is rank-deficient, reflecting the existence conditions for a solution in terms of the singular values
as formulated by De Keyser et al. 2007. It would be extremely useful to highlight throughout the entire manuscript
how the findings reflect this standard mathematical approach which many readers have as background knowledge.

Reply: We thank the reviewer for this suggestion. Indeed, Eq. 25 and 26 can also be obtained from singular value
decomposition (SVD), and Eq. 23 can be viewed as a partial SVD. A fully fledged SVD of the matrix X defined by
Eq. 18 will be X = ASB where S is a M ×

(
d+r
r

)
diagonal matrix and A and B are unitary matrices of order M

and
(
d+r
r

)
respectively. If the transformation matrix G in Eq. 23 is chosen to be unitary, we have, in terms of SVD,

G = B−1 and X ′ = AS. In the text, we previously omitted this interpretation to avoid the additional mathematical
concept to the ease of a wide audience who might not be familiar with it. However, mentioning this concept can
indeed facilitate technical readers and also help build connection between the existence condition given by De Keyser
et al 2007 and the geometrical interpretation here. We have added citations to the textbook Numerical Analysis
Mathematics of Scientific Computing by David Kincaid and Ward Cheney to reflect this concept and citations to
previous studies about the existence conditions in the revised manuscript. Please see lines 232–234 and 241–244.

The authors focus on the basic ALQG system. They argue that the approach utilizing gradients avoids having
to make specific physical assumptions. However, in many practical cases there are physical constraints such as the
divergence-free nature of the magnetic field. This is briefly touched upon at the beginning of section 2. As the
authors suggest one can apply the scalar field approach to each of the vector field components, but that does not
incorporate the constraint yet. In section 4.2 the authors propose that one can drop some gradient components, which
is a (restricted) form of geometric constraints. How can the proposed technique incorporate more generic physical and
geometric constraints? How do the conclusions of the present paper generalize to the situation where such constraints
can be applied?

Reply: We thank again for this comment. While the present study is in principle devoted to explore the most
general geometric constraints (in time-space) resulted from the distribution of measurement points, thus contributing
to future orbital design of multi-spacecraft missions, it is very useful and important to incorporate, especially in the
case of rank deficiency caused by an inappropriate configuration of measurement points as discussed in Section 4.2,
more physical and geometric constraints, if possible, to add constituent equations to Eq. 26 to increase the rank of R′

and hence to reduce the number of components in G−1g̃ that need to be dropped. However, to give a general solution
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to this problem is difficult, as on the one hand different forms of constraints have different results and on the other
hand non-linearity may be introduced by some particular forms of constraints.

In the case of multiple scalar fields with i denoting the ith field, we could extend Eqs. 8, 9, 12, 13, and 14 to

smi =jmi − pdi(xm) (1)

S =

3∑
i

m,n∑
M

smiWmnsni (2)

Rβα ≡
M∑
m,n

xβ
mWmnx

α
n, (3)

Jβi ≡
M∑
m,n

xβ
mWmnjni. (4)

Jβi =
∑
|α|≤d

Rβαg̃αi, (5)

For each i, Eq.(5) consists of
(
d+r
r

)
equations and unknowns. We could combine these equations for all components

together. First we define the order of multi-index

α ≺ β if |α| < |β| or when |α| = |β| there exists n ≤ r such that αm = βm;m ≤ n and αn > βn (6)

and accordingly an order function for multi-index odr : Nr 7→ N for given d and r. For example,

o23((0, 0, 0)) = 1, o23((1, 0, 0)) = 2, o23((0, 2, 0)) = 8 (7)

We then define, by using the inverse function o−1(·) where the subscripts dr are omitted for simplicity,

Rqp =

{
Rαβ ,where α = o−1(q mod

(
d+r
r

)
), β = o−1(p mod

(
d+r
r

)
) if q − q mod

(
d+r
r

)
= p− p mod

(
d+r
r

)
0, otherwise

(8)

Jq =Jαi,where α = o−1(q mod
(
d+r
r

)
), i =

(
q − q mod

(
d+r
r

))
/
(
d+r
r

)
(9)

G̃q =g̃αi,where α = o−1(q mod
(
d+r
r

)
), i =

(
q − q mod

(
d+r
r

))
/
(
d+r
r

)
(10)

Visually, the matrix R is given by

R =


R

R
R

. . .

 (11)

Thus Eq.(5) for all i becomes

Jq =
∑
q

RqpG̃p, (12)

Let us first consider linear constraints for l scalar fields in the general form

l(d+r
r )∑
q

aqGq = 0 (13)

where aq are constants. Ordering magnetic field components Bi following i = 1, 2, 3 (l = 3) and taking d = 1, r = 3,
the condition ∇ ·B = 0 gives non-vanishing coefficients a2 = a7 = a12 = 1. For simplicity, let us consider the case of
l = 2, d = 1, r = 2, a2 = 1, a5 = −1. Eliminating G2 by means of Eq.(13) in the total error and minimizing the error
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with respect to Gq for 1 ≤ q ≤ 6, the matrix R is given by

R =


R11 0 R13 0 R15 0
0 0 0 0 0 0

R31 0 R33 0 R35 0
0 0 0 R44 R45 R46

R51 0 R53 R54 R55 R56

0 0 0 R64 R65 R66

 (14)

This matrix can be decomposed according to R = XTWX to give

X =



1 0 x12 0 x11 0
1 0 x22 0 x21 0
1 0 x32 0 x31 0
...

...
...

...
...

...
0 0 0 1 x11 x12

0 0 0 1 x21 x22

0 0 0 1 x31 x32
...

...
...

...
...

...


(15)

where

W =

[
W

W

]
(16)

If there exists a line

b(0,0) + b(1,0)x1 + b(0,1)x2 = 0 (17)

such that all points xm lie on this line, we have rank X ≤ 4. To see this, we first prepare a matrix from Eq.(16) by
adding the fourth column to the first and the last column to the third. Then combining the first, third, and fifth
column with the coefficient given in Eq.(17) gives a column of zero. Thus, according to the procedure given in Section
4.2 in the manuscript, we have to drop at least one component of gradient. The result can be easily generalized to
the most general case of Eq.(13).

Non-linear constraints are difficult to tackle. Taking the example of estimating the linear gradients of velocity and
entropy of an one-dimensional isentropic flow, we order the two field as (v, s). The constraint is

ds/dt = ∂0s+ v∂1s = 0 (18)

or

G5 + G1G6 = 0 (19)

By eliminating G5 in the total error, and following the procedure given in the manuscript, we obtain the matrix

X =



1 x10 x11 0 0 0
1 x20 x21 0 0 0
1 x30 x31 0 0 0
...

...
...

...
...

...
−G16 0 0 1 0 x11

−G26 0 0 1 0 x21

−G36 0 0 1 0 x31
...

...
...

...
...

...


(20)

Since the unknown G6 present in the matrix X and R, to solve Eq.(12) the method of iteration need to be adopted,
that is, assigning a set of arbitrary values to the unknowns Gp, calculating the matrix R and its inverse, multiplying
J with R−1 to get a new set of values for Gp, calculating R... and so on, until the values of Gp converge. In the
present example of one-dimensional isentropic flow, G6 is a constant in time-space, thus giving G16 = G26 = G36 = . . . .
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Hence, in analogy with the previous linear example, if the measurement points lie on a line in time-space, we could
deduce that the rank of Eq.(20) is less than five, such that one component need to be dropped following again the
procedure given in.

From the discussion about linear and non-linear constraints, we can see that a limited number of additional physical
constraints does not alter the existence condition in terms of measurement point distribution, in particular the
geometrical configuration of a spacecraft constellation. Even if ∇ · B is taken into account, in order to ensure the
existence of the most complete solution for the gradients of magnetic field, the spacecraft should not lie on a second-
order surface. However, as a major result of the paper by Shen et al. (2021), we can incorporate more physical fields,
such as electric current, and the associated constraints that result from physical formula and assumptions, to allow
the spacecraft to lie on second-order surfaces, but not on any first-order surface. This result is specific to magnetic
field and cannot be generalized to other fields. In the manuscript we have added a brief discussion about this problem.
Please see lines 368–376.Maybe in the future we could explore if there is any general framework to contain them all.
We thank the reviewer again for this inspiring comment.

The numerical conditioning of the ALQG system depends on the scaling of the variables. The authors use the spatial
coordinates as such, and the time coordinate multiplied by a characteristic speed. What if the spatial variations are
very anisotropic, as is often the case in magnetic field dominated situations? Note that this is related to the question
of geometric constraints and the “homogeneity scales” introduced by De Keyser et al. 2007.

Reply: Yes, the spatial variation of physical fields in space can be anisotropic. To tackle this, ”homogeneity scales”,
which can be interpreted as linear scales, for different spatial dimensions can be utilized to improve accuracy in
estimating linear gradients. And in estimating gradients of higher order, more scales can also be introduced similarly.
De Keyser et al. 2007 used 4:1 for parallel over perpendicular scales. A recent observational study (Liu et al., 2022)
showed the ratio being roughly 2:1 for solar wind (Figure 2 of the paper)and magnetosheath (Figure 3 of the paper)
plasmas. We have added a section in appendix to discuss this problem. Please see lines 81–83

The authors mention the problem of error estimation. How do they view/compare their approach with the one
proposed by De Keyser et al. 2008, where the effects of measurement errors and approximation errors (in space and
time) are combined?

Reply: The approach proposed by De Keyser (2008) includes the estimation of both errors to generate a weight
matrix, which can be used to improve accuracy. His estimation of measurement error is straightforward. The
estimation of approximation error is also meticulously and finely developed. While we believe this approach can work
well for linear gradients, it is not immediately clear to us how to extend this approach to the case of higher orders.
The method of estimation given in this paper is in principle a direct one, and can be used for error estimation at all
orders. In addition, the effects of distribution of measurement points are taken into account not only in the estimation
of approximation error (Eq. 32) but also for the measurement errors (Eq. 31, estimation error caused by measurement
error can be estimated by multiplying δj with the terms outside the square brackets.)

Matrix (20) is of a form that is known to be likely ill-conditioned (a Vandermonde matrix) – admittedly, this ill-
conditioning is more pronounced as the polynomial approximation degree becomes higher; for a degree 2 the situation
is not so bad yet. But perhaps this deserves a word of caution: the technique is in principle applicable to higher-degree
approximations, but in practice there are clear limitations also from the numerical point of view.

Reply: We agree with the reviewer. A caveat has been provided in the revised manuscript. Please see line 377–382.
While the era of degree 2 is approaching, the time of degree 3 and higher remain not clearly visible.

On line 267: For constellations with small spacecraft separation distances, the positioning error may become
considerable. A word of caution would be welcome here.

Reply: Thanks. Discussion has been added to lines 289–292.
It is not clear to why the authors introduce the wave field w. No specific conclusions are drawn in the error analysis

of section 5 about this field. I therefore believe that the authors could just think of the wave field as part of the scalar
field that is to be modelled. The end result would simply be to remove w from the formalism and thus simplifying it.
I leave this to the authors to judge, but when keeping w, then an explicit discussion of its role in the error analysis
in section 5 would be welcome.

Reply: We thank the reviewer for pointing out this. Clarification has been added. Please see lines 314–319.The
total measurement consists of, in addition to measurement error, physical fields at various scales, which include, from
small scale to large scale, small wave field, background fields of low-order polynomials, background fields of high-order
polynomials. The magnitude of the wave field is assumed to be known a priori and could be modeled in a similar way
as is measurement error. The truncation error decreases with decreasing separation between measurement points.
The errors caused by measurement error and wave field behave oppositely so as to set a lower limit to the maximum
accuracy that is achievable by reducing |x|.

Technical corrections
Throughout the text: replace “A” by “Appendix A” to refer to the appendix.
Reply: corrected.
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Throughout the text: “Keyser” -> “De Keyser”; the references on line 400-404 should read as follows: “De Keyser,
J.: …”

Reply: corrected.
30: “of reconnections” -> “the reconnection region”
Reply: In a steady global picture of the magnetosphere, key regions include the reconnection region for example in

the magnetotail. Here we are inclined to the key regions being those important parts of a physical process such as a
reconnection process. We have changed “of reconnections” to ”in reconnection”. Please see line 30.

35: “The algorithm” -> “An algorithm”
Reply: corrected.
39: “As if” -> “If”
Reply: corrected.
46: “point distribution” -> “the point distribution”
Reply: corrected.
48 and later: notation f,α is strange; shouldn’t this be f ′

α ?
Reply: Perhaps line 84 and later? As referenced in line need line numberand given in Appendix A, this is defined by

f,α ≡ ∂α ≡. The comma in subscript represents partial differentiation. Such notations are commonly used in tensor
analysis, differential geometry/manifold, and the theory of general relativity. They are very simple in form, easy to
use, and in particular, well-suited for the study of gradients of various order in the space of indefinite dimensions (3
for space and 4 for time-space).

150: “Similar result has” -> “A similar result has” or “Similar results have”
Reply: corrected.
152: “be on a surface” -> better “lie on a surface”?
Reply: corrected.
163: I do not think “great” has the connotation that you want in this sentence. Better “important”?
Reply: corrected.
163: “desgins” -> “design”
Reply: corrected.
172: “sphere” -> “the sphere” or “a sphere”
Reply: corrected.
204: “exists” -> “exist”
Reply: corrected.
235: “To the ease of” -> better “To facilitate the”?
Reply: corrected.
245: “an unique” -> “a unique”
Reply: corrected.
310: “have” -> “has”
Reply: corrected.

II. RESPONSE TO REVIEWER 2

RC2: ’Comment on angeo-2023-30’, Anonymous Referee #2, 16 Nov 2023 The authors explore future multipoint
techniques for constellation missions to estimate gradients of physical quantities. The analytical theory is well devel-
oped and comprehensive. I only have minor comments on the text as presented. The manuscript, however, contains
no figures which this reviewer feels would greatly aid interpretation by readers who are less mathematical in their
thinking and more visual. A few simple diagrams demonstrating the concepts and findings would greatly complement
the existing text. If some figures are added and the minor points below are addressed, I would recommend publication.

Reply: We thank the reviewer for this suggestion. Two figures, together with associated text in lines 109–110 and
192–199, have been provided to aid the reading by a wide audience.

Line 30: Change ”of reconnections” to ”in reconnection”
Reply: Changed.
Lines 31-32: This states the reconstruction avoids assumptions, however, the underlying assumptions about the

forms of gradients are omitted, e.g. that they are relatively consistent over the scales of the spacecraft separation.
Reply: Yes. This can be viewed as an assumption for the method to successfully estimate the presupposed gradients

of some physical field. It may also be viewed as a result of the method, for the method always estimates gradients
over the spacecraft separation. We have changed the sentence to reflect this limitation. Please see lines 32–34.

Lines 56-59: It would be good to explicitly mention that in practical applications measurements include noise which
may then affect estimates of gradients.
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Reply: Thanks. We have changed the last sentence to ”In practical applications, measurements include noise
which may also affect estimates of gradients. It is therefore crucial to develop a reliable method for estimating and
quantifying errors of various origin.” Please see lines 62–63.

Line 70: change to ”dipole (and higher-order moments)”
Reply: Changed.
Lines 71-72: The magnetosheath is highly non-uniform over the scale of its thickness, so please be specific over

what sorts of distances you are referring to.
Reply: The distinction and hence categorization between uniformity and variation are in principle artificial. In the

text we were referring to the 100-200 MK background in the subsolar magnetosheath (See, e.g., Figs 2-6 of Dimmock
et al. (2015)). Admittedly, the magnetosheath is highly turbulent, especially downstream of quasi-parallel shocks.
Since the example of magnetosheath is not crucial for the present study, to make things simple we have removed this
part.

Line 74: Are the wave fields really waves or just residuals? You mention they must have smaller scales, referring
to their physical size, but do they not also need to have smaller amplitude fluctuations?

Reply: They are real waves whose amplitude can be large as compared with the variation of background field at
the scale of spacecraft separation. If large-amplitude waves are retained during the estimation of gradients, the error
caused by them could overwhelm the result. If the method is not to estimate the gradients of these wave fields, it is
preferable to apply a filter to the data. The estimation of the associated error is contained in Eq. 31. More discussion
about waves has been added to lines 314–319

Line 77: It would be good to mention if the speed v needs to be chosen to be the same for all measurement points
or if it can be allowed to vary.

Reply: Thanks. This is presented more explicitly in lines 81–82 and 105.
Line 80 (and throughout): ”A” needs to change to ”Appendix A”
Reply: Corrected.
Line 147: ”a algebraic” change to ”an algebraic”
Reply: Corrected
Lines 197-203: This is almost identical to the previous paragraph, remove.
Reply: Removed.
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