I. RESPONSE TO REVIEWER 1

RC1: ’Comment on angeo-2023-30’, Anonymous Referee #1, 10 Nov 2023
General comments

This paper discusses the solution of the least-squares system that stems from a multi-dimensional Taylor series
approximation of a scalar field. The authors foresee the inclusion of the time dimension in their analysis. The paper
does a nice job of pointing out the opportunities and some of the difficulties of applying such least-squares gradient
computation techniques to situations where a larger number of spacecraft is available and/or where one attempts to
assess the higher-than-linear gradients. The existence conditions are interpreted in a geometric way, which is helpful.
The paper contains new ideas and is at the forefront of research.

The paper is well-structured. There is a good overview of the relevant literature. The paper also puts the work
properly into context. The conclusions are clear. The paper length is appropriate.

I have a few suggestions for improving the presentation of the material and I also have a few questions, see specific
comments below.

There are several language and typographical issues in the manuscript; see technical corrections listed below. The
paper would benefit from being thoroughly reread once more.

The paper will likely be suitable for publication after minor revision.

Reply: We thank the reviewer for these constructive comments. We will carefully review the paper and address
any technical issues to the best of our ability.

Specific comments

The authors discuss the weighted least-squares problem that arises when trying to fit a polynomial approximation
to the observations of a scalar field at multiple points. This is, in general, an overdetermined problem. The solution
of such a problem is well-known standard numerical mathematics: There is the theory of the “generalized inverse” of
an overdetermined system and the use of the singular value decomposition to solve the system. None of that math,
however, is referred to explicitly in the paper, while the paper reflects that math in the specific context of gradient
computation. For instance, matrix (26) shows the singular value decomposition of the original matrix, which in the
case discussed here is rank-deficient, reflecting the existence conditions for a solution in terms of the singular values
as formulated by De Keyser et al. 2007. It would be extremely useful to highlight throughout the entire manuscript
how the findings reflect this standard mathematical approach which many readers have as background knowledge.

Reply: We thank the reviewer for this suggestion. Indeed, Eq. 25 and 26 can also be obtained from singular value
decomposition (SVD), and Eq. 23 can be viewed as a partial SVD. A fully fledged SVD of the matrix X defined

by Eq. 18 will be X = ASB where S is a M x (dtr) diagonal matrix and A and B are unitary matrices of order
M and (dj:r) respectively. If the transformation matrix G in Eq. 23 is chosen to be unitary, we have, in terms of

SVD, G = B 'and X' = AS. In the text, we have omitted this interpretation to avoid the additional mathematical
concept to the ease of a wide audience who might not be familiar with it. However, mentioning this concept can
indeed facilitate technical readers and also help build connection between the existence condition given by De Keyser
et al 2007 and the geometrical interpretation here. We will add citations to textbook such as Numerical Analysis
Mathematics of Scientific Computing by David Kincaid and Ward Cheney as appropriate to reflect this concept and
citations to previous studies about the existence conditions in the revised manuscript.

The authors focus on the basic ALQG system. They argue that the approach utilizing gradients avoids having
to make specific physical assumptions. However, in many practical cases there are physical constraints such as the
divergence-free nature of the magnetic field. This is briefly touched upon at the beginning of section 2. As the
authors suggest one can apply the scalar field approach to each of the vector field components, but that does not
incorporate the constraint yet. In section 4.2 the authors propose that one can drop some gradient components, which
is a (restricted) form of geometric constraints. How can the proposed technique incorporate more generic physical and
geometric constraints? How do the conclusions of the present paper generalize to the situation where such constraints
can be applied?

Reply: We thank again for this comment. While the present study is in principle devoted to explore the most
general geometric constraints (in time-space) resulted from the distribution of measurement points, thus contributing
to future orbital design of multi-spacecraft missions, it is very useful and important to incorporate, especially in the
case of rank deficiency caused by an inappropriate configuration of measurement points as discussed in Section 4.2,
more physical and geometric constraints, if possible, to add constituent equations to Eq. 26 to increase the rank of R’
and hence to reduce the number of components in Gt g that need to be dropped. However, to give a general solution
to this problem is difficult, as on one hand different forms of constraints have different results and on the other hand
non-linearity may be introduced by some particular forms of constraints.



In the case of multiple scalar fields with ¢ denoting the ith field, we could extend Eqs. 8, 9, 12, 13, and 14 to

Smi =Jmi — Pdi(Xm) (1)
3 m,n
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For each i, Eq(ﬂ) consists of (d':r) equations and unknowns. We could combine these equations for all components
together. First we define the order of multi-index

a < B if |a] < |8] or when |a] = |8| there exists n < r such that «,,, = 8,,,;m < n and «,, > 3, (6)
and accordingly an order function for multi-index o4, : N” — N for given d and r. For example,
023((07070)) =1, 023((17070)> = 2,093((0,2,0)) =8 (7)

We then define, by using the inverse function 071(~) where the subscripts dr are omitted for simplicity,

R {Raﬁ,where o =0 "(gmod (d':r)), B=o0"(pmod (d':r)) if ¢ — ¢ mod (d':r) =p—pmod (djr) ()
ap =

0, otherwise

Jy =Jwi, Where o = o' (¢ mod (dfr)), i= (q — ¢ mod (djr)) /(dfr) (9)
_C';q =G, where a = 0~ (g mod (djr)), i= (q — ¢ mod (d':r)) /(d":r) (10)

Visually, the matrix R is given by

R
R
R= R (11)
Thus Eq(ﬂ) for all 7 becomes

Jq = Z qugp’ (12)

Let us first consider linear constraints for [ scalar fields in the general form

(1)

Z 4Gy =0 (13)

q

where a, are constants. Ordering magnetic field components B; following i = 1,2,3 (I = 3) and taking d = 1,7 = 3,
the condition V - B = 0 gives non-vanishing coefficients ay = a; = a,5= 1. For simplicity, let us consider the case of
l=2,d=1,r =2,a9 = 1,a5 = —1. Eliminating G, by means of qu@) in the total error and minimizing the error
with respect to G, for 1 < g < 6, the matrix R is given by

Rii1 0 Rz 0 Ry O
0 0 O 0 0 0
0 0 0 Rys Rus Rus
Rs1 0 Rsz Rsa Rss Rse



This matrix can be decomposed according to R = X Twx to give
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where

w| (10

If there exists a line
be,0) + b1,00Z1 + b0, 1)2 =0 (17)

such that all points x,,, lie on this line, we have rank & < 4. To see this, we first prepare a matrix from Eq(@) by
adding the fourth column to the first and the last column to the third. Then combining the first, third, and fifth
column with the coefficient given in Eq(ﬂ) gives a column of zero. Thus, according to the procedure given in Section
4.2 in the manuscript, we haye to drop at least one component of gradient. The result can be easily generalized to
the most general case of Eq(@)

Non-linear constraints are difficult to tackle. Taking the example of estimating the linear gradients of velocity and
entropy of an one-dimensional isentropic flow, we order the two field as (v, s). The constraint is

ds/dt = 0ys + v0;s =0 (18)
or
G5 +G196 =0 (19)
By eliminating G5 in the total error, and following the procedure given in the manuscript, we obtain the matrix
M 1 T19 T11 O 0 O T
1 Tog Lo1 00 O
1 T30 T31 00 O
Y=1 65 0 0 10, (20)
*ggﬁ 0 0 1 0 Toq
_g36 0 0 10 31

Since the unknown Gg present in the matrix X and R, to solve Eq(@) the method of iteration need to be adopted,
that is, assigning a set of arbitrary values to the unknowns G, calculating the matrix R and its inverse, multiplying

J with R~ to get a new set of values for G,, calculating R... and so on, until the values of G, converge. In the
present example of one-dimensional isentropic flow, Gg is a constant in time-space, thus giving G = Gog = G36 = . . - -
Hence, in analogy with the previous linear example, if the measurement points lie on a line in time-space, we could
deduce that the rank of Eq.(R() is less than five, such that one component need to be dropped following again the
procedure given in.

The numerical conditioning of the ALQG system depends on the scaling of the variables. The authors use the spatial
coordinates as such, and the time coordinate multiplied by a characteristic speed. What if the spatial variations are
very anisotropic, as is often the case in magnetic field dominated situations? Note that this is related to the question
of geometric constraints and the “homogeneity scales” introduced by De Keyser et al. 2007.

Reply: Yes, the spatial variation of physical fields in space can be anisotropic. To tackle this, "homogeneity scales”,
which can be interpreted as linear scales, for different spatial dimensions can be utilized to improve accuracy in



estimating linear gradients. And in estimating gradients of higher order, more scales can also be introduced similarly.
However, these scales entail assumptions about the underlying physical phenomenon, which could potentially, though
not very likely, miscalculate the full picture. De Keyser et al. 2007 used 4:1 for parallel over perpendicular scales.
A recent observational study (Liu et al. 2022, doi:10.3847/1538-4357 /ac5d4b) showed the ratio being roughly 2:1 for
solar wind (Figure 2 of the paper)and magnetosheath (Figure 3 of the paper) plasmas. These ratios are less prominent
than the ratio of temporal over spatial scales. We will add discussion about these specific conditions in practice.

The authors mention the problem of error estimation. How do they view/compare their approach with the one
proposed by De Keyser et al. 2008, where the effects of measurement errors and approximation errors (in space and
time) are combined?

Reply: The approach proposed by De Keyser 2008 (doi.org/10.5194/angeo-26-3295-2008) includes the estimation
of both errors to generate a weight matrix, which can be used to improve accuracy. His estimation of measurement
error is straightforward. The estimation of approximation error is also meticulously and finely developed. We believe
this approach can work well for linear gradients. The estimation of approximation error however cannot be readily
extended to the case of higher-order approximations. Our approach of error estimation can be used for error estimation
at all orders. In addition, the effects of distribution of measurement points are taken into account not only in the
estimation of approximation error (Eq. 32) but also for the measurement errors (Eq. 31, estimation error caused by
measurement error can be estimated by multiplying 67 with the terms outside the square brackets.)

Matrix (20) is of a form that is known to be likely ill-conditioned (a Vandermonde matrix) — admittedly, this ill-
conditioning is more pronounced as the polynomial approximation degree becomes higher; for a degree 2 the situation
is not so bad yet. But perhaps this deserves a word of caution: the technique is in principle applicable to higher-degree
approximations, but in practice there are clear limitations also from the numerical point of view.

Reply: We agree with the reviewer. A caveat will be provided in the revised manuscript. While the era of degree
2 is approaching, the time of degree 3 and higher remain not clearly visible.

On line 267: For constellations with small spacecraft separation distances, the positioning error may become
considerable. A word of caution would be welcome here.

Reply: Thanks. This will be discussed in the revision.

It is not clear to why the authors introduce the wave field w. No specific conclusions are drawn in the error analysis
of section 5 about this field. I therefore believe that the authors could just think of the wave field as part of the scalar
field that is to be modelled. The end result would simply be to remove w from the formalism and thus simplifying it.
I leave this to the authors to judge, but when keeping w, then an explicit discussion of its role in the error analysis
in section 5 would be welcome.

Reply: We thank the reviewer for pointing out this. Clarification will be added in the revision. The total measure-
ment consists of, in addition to measurement error, physical fields at various scales, which include, from small scale to
large scale, small wave field (see line 74), background fields of low-order polynomials, background fields of high-order
polynomials. The magnitude of the wave field is assumed to be known a priori and could be modeled in a similar way
as is measurement error. The truncation error decreases with decreasing separation between measurement points.
The errors caused by measurement error and wave field behave oppositely so as to set a lower limit to the maximum
accuracy that is achievable by reducing |x]|.

Technical corrections

Throughout the text: replace “A” by “Appendix A” to refer to the appendix.

Throughout the text: “Keyser” -> “De Keyser”; the references on line 400-404 should read as follows: “De Keyser,
J.ow7

30: “of reconnections” -> “the reconnection region”

35: “The algorithm” -> “An algorithm”

39: “As if” -> “If”

46: “point distribution” -> “the point distribution”

48 and later: notation f’ is strange; shouldn’t this be f* 7

150: “Similar result has” -> “A similar result has” or “Similar results have”

152: “be on a surface” -> better “lie on a surface”?

163: I do not think “great” has the connotation that you want in this sentence. Better “important”?

163: “desgins” -> “design”

172: “sphere” -> “the sphere” or “a sphere”

204: “exists” -> “exist”

235: “To the ease of” -> better “To facilitate the”?

245: “an unique” -> “a unique”

310: “have” -> “has”



Reply: These will be corrected.
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