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Abstract. The steady-state magnetosheath model has various applications for studying the plasma and magnetic field profile

around the planetary magnetospheres. In particular, the magnetosheath model is analytically obtained by solving the Laplace

equation for parabolic boundaries (bow shock and magnetopause). We address the question “How can we utilize the mag-

netosheath model by transforming into a more general, empirical, non-parabolic magnetosheath geometry?” To achieve the

goal, we develop the scalar-potential mapping method which provides a semi-analytic estimate of steady-state flow velocity5

and magnetic field in the empirical magnetosheath domain. The method makes use of a coordinate transformation from the

empirical magnetosheath domain into the parabolic magnetosheath domain, and evaluate a set of variables (shell variable and

connector variable) to utilize the solutions of Laplace equation obtained for the parabolic magnetosheath domain. Our model

uses two invariants of transformation: the zenith angle within the magnetosheath with respect to the direction to the Sun and the

ratio of the distance to the magnetopause to the thickness of magnetosheath along the magnetopause-normal direction. The use10

of magnetopause-normal direction makes a marked difference from the earlier model construction using the radial direction

as reference. The plasma flow and magnetic field can be determined as a function of the upstream condition (flow velocity or

magnetic field) in a wide range of zenith angle. The scalar-potential mapping method is computationally inexpensive, using

analytic expressions as much as possible, and is applicable to various planetary magnetosheath domains.

1 Introduction15

Steady-state plasma flow and magnetic field can be regarded as a realization of potential field in the planetary magnetosheath

region when the vorticity and the electric current are ignored. In such a case, the potential is obtained by solving the Laplace

equation, which was elegantly and analytically solved by Kobel and Flückiger (1994) for a parabolic shape of magnetosheath

(hereafter KF). The KF potential was further extended to the stream function in the magnetosheath by Guicking et al. (2012).

The KF solution made a series of breakthroughs in the magnetosheath research. One of the most successful applications is the20

ability to track the plasma parcel along the streamline in the modeled magnetosheath. The tracking method was extensively

used to observationally study the mirror mode growth (e.g., Tatrallyay et al., 2002; Génot et al., 2011) and the streamwise

turbulence evolution in the magnetosheath (Guicking et al., 2012). Predictive models of plasma flow and magnetic field serve

as a useful tool when combined with the numerical simulation or the observational data.

The KF potential is obtained using the assumption that the planetary bow shock and magnetopause have a parabolic shape25

sharing the same focal point. Empirical models of the bow shock and magnetopause (fitted to the spacecraft data), on the other
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hand, are not necessarily parabolically or co-focally shaped. For example, the empirical Earth bow shock model by Farris et al.

(1991) and Cairns et al. (1995) has a parabolic shape but the focal point differs from that of the KF solution. The empirical

magnetopause model by Shue et al. (1997) applies a power-law scaling to the parabolic shape such that the magnetic field lines

appear stretched in the tail region. The gap between the KF parabolic magnetosheath and the empirical magnetosheath needs30

to be filled when applying the KF potential in the empirical magnetosheath.

Naively speaking, one wishes to find a conformal mapping (angle-preserving mapping) from the KF parabolic magne-

tosheath onto a non-parabolic empirical magnetosheath shape such as the analytic extension of magnetopause shape (Narita

et al., 2023). However, no general mathematical algorithm is known so far to obtain the conformal mapping when the spatial

domain is not properly bounded. The problem lies in the fact that the magnetosheath is bounded only by two sides, i.e., the35

standing shock and the magnetopause in the radial direction to the planet, but not bounded along the flow in the tail region. The

algorithms of numerical conformal mapping are so far proposed for spatially bounded domains (Papamichael and Whiteman,

1973; Chakravarthy and Anderson, 1979; Fornberg, 1980; Karageorghis et al., 1996) or domains with a closed shape of internal

boundaries (Wei et al., 2014).

Here we addresss the question “How can we utilize the KF magnetosheath model by transforming into a more general,40

empirical, non-parabolic magnetosheath geometry?” To achieve the goal, we develop a mapping method which provides a semi-

analytic estimate of steady-state flow velocity and magnetic field in the empirical magnetosheath domain. Our scalar-potential

mapping method is computationally inexpensive by using the analytic expression as much as possible, and is applicable to

various planetary magnetosheath domains.

This work is organized in the following fashion. After reviewing the magnetosheath model constructed by Kobel and Flück-45

iger (1994) (section 2 and discussing different mapping methods (section 3), the detailed procedure of the magnetopause-

normal mapping is presented (section 4) with concluding remark (section 5).

2 Revisiting the magnetosheath scalar potential

2.1 Parabolic coordinates

In the KF parabolic coordinates, the shell variable v (iso-contour lines enveloping the magnetosphere) and the connector u50

(iso-contour lines connecting from the bow shock to the magnetopause) play an important role in computing the flow velocity

and magnetic field in the magnetosheath. These variables are explicitly evaluated using Cartesian coordinates and the radial

distance from the focal point as

v =
√

r0 +(xk −x0) (1)

u =
√

r0 − (xk −x0), (2)55

where r0 is the distance to the focus at x0:

r0 =
√
(xk −x0)2 + y2k + z2k. (3)
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The focus is along the x axis, and is defined as

x0 =
1

2
Rmp. (4)

xk, yk, and zk are the Cartesian representation of the KF magnetosheath model (i.e., with the pre-fixed bow shock and magne-60

topause shapes) obtained by projecting the position vector onto the unit vectors ex, ey , and ez:

xk = r(k) · ex (5)

yk = r(k) · ey (6)

zk = r(k) · ez. (7)

To complete the variable set for computing the potentials and the stream function, the azimuthal angle ϕ is introduced as65

ϕ= atan(zk/yk). (8)

2.2 Velocity potential

In the frame of potential field theory, the flow velocity U is obtained either from the velocity potential (a scalar potential)

Φ(vel) or from the stream function (also a scalar potential) Ψ as70

U =−∇Φ(vel) =−∇× (Ψeϕ) . (9)

The symbol eϕ is the unit vector in the azimuthal direction around the symmetry axis (Sun-to-planet direction). Kobel and

Flückiger (1994) and Guicking et al. (2012) obtained the analytic expression of the velocity potential Φ(vel) using the shell

variable v and the connector variable u.

Φ(vel) = −Ux

(
v2mpv

2
bs

v2bs − v2mp

)(
u2 − v2

2v2bs
+ lnv

)
−75

1

2
Ux

(
u2 − v2

)
+Φ

(vel)
0 , (10)

where Ux is the upstream flow velocity, vmp the shell variable at the magnetopause, vbs the shell variable at the bow shock, v

the shell variable, u the connector variable, and Φ
(vel)
0 a free parameter (integration constant) which is set to zero without loss

of generality. The boundary shell values vmp and vbs contain the information on the stand-off distances (Rmp and Rbs) in the

subsolar region, and are defined by Kobel and Flückiger (1994) as80

vmp =
√
Rmp (11)

vbs =
√
2Rbs −Rmp. (12)
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2.3 Stream function

Guicking et al. (2012) transformed the KF potential and obtained analytically the stream function Ψ as a function of the shell

variable and the connector variable:85

Ψ = −1

2
Ux

(
v2mpv

2
bs

v2bs − v2mp

)
u

v

(
v2

v2bs
− 1

)
− 1

2
Uxuv. (13)

Hereafter, one may set Ux =−1 so that the velocity potential Φ(vel) is normalized to the upstream velocity. Isocontour lines

of the stream function represent the streamline.

2.4 Magnetic scalar potential

The magnetic field in the magnetosheath is derived from the scalar potential in the same fashion as the flow velocity, that is,90

B =−∇Φ(mag). (14)

The magnetic potential is a function of the shell variable v and the connector u (Kobel and Flückiger, 1994):

Φ(mag) = −
v2mpv

2
bs

v2bs − v2mp

×[(
B(up)

y cosϕ+B(up)
z sinϕ

)
u

(
1

v
+

v

v2bs

)
+

B(up)
x

(
u2 − v2

2v2bs
+ lnv

)]
95

−B(up)
x (−x)−B(up)

y y−B(up)
z z+Φ

(mag)
0 , (15)

where B
(up)
x is the sunward component of the upstream magnetic field (corresponding to the GSE-X in near-Earth space), and

B
(up)
y and B

(up)
z are two components of the upstream magnetic field perpendicular to the x direction. ϕ is the azimuthal angle

of the position around the symmetry axis (the y direction is given by the angle ϕ= 0). The integration constant is chosen as

Φ
(mag)
0 = 0. The magnetic potential cannot be further transformed into the form of stream function since the magnetic field100

distribution is essentially three-dimensional in the magnetosheath.

3 Mapping method comparison

3.1 Mapping problem

Our task is to find the shell variable v and the connector u in the empirical magnetosheath by finding a suitable mapping of

the position vector from the empirical magnetosheath (denoted by r) onto the KF parabolic system (denoted by r(k)). The105

evaluated v and u are then readily used to obtain the scalar potentials and the stream function. The flow velocity and the

magnetic field in the empirical magnetosheath are obtained by computing the gradient of the respective potential.
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A practically useful mapping procedure to utilize the KF potential is proposed by Soucek and Escoubet (2012) by using

the radial direction as a reference. While the radial mapping can reasonably (i.e., with a relatively high accuracy) transform

the KF potential into the empirical magnetosheath domain on the dayside, the mapping quality becomes degraded in the flank110

region due to the conversion effect associated with the non-orthogonal grid construction. Our approach differs from the radial

mapping by using the magnetopause-normal direction as a reference. The azimuthal coordinate ϕ is still orthogonal to the u

and v coordinates. We briefly compare between the two mapping methods here.

3.2 Radial direction as reference

Soucek and Escoubet (2012) presented in their pioneering work an algorithm of radial mapping by transforming the KF115

magnetosheath model into a general, empirical magnetosheath shape by referring to the radial direction from the planet and

scaling the radial position in the magnetosheath to the KF model. While the radial mapping can reasonably (i.e., with a

relatively high accuracy) transform the KF potential into the empirical magnetosheath domain on the dayside, the mapping

quality becomes degraded in the flank region due to the strongly non-orthogonal grids. Figure 1 displays a comparison of the

radial grids between the KF magnetosheath model and the empirical magnetosheath model. The grids span the radial direction120

to the planet and transfinite interpolation between the bow shock and the magnetopause. The radial mapping has a drawback

in a stronger grid non-orthogonality effect, which causes an artificial converging flow pattern in the flank region (velocity

potential shown in Fig. 2 when the scalar potential is directly transformed. In the Soucek-Escoubet method, the problem of

flow conversion effect was avoided by solving the MHD Rankine-Hugoniot relation and tracking the streamline iteratively

between the KF parabolic magnetosheath model and the empirical magnetosheath model.125

Although the method introduced by Génot et al. (2011) and later adapted by Soucek and Escoubet (2012) is computational

less expensive than global magnetosheath simulations, the density and velocity fields from the bow shock to a given point in

the magnetosheath still needs to be computed along the streamline in an incremental way. Moreover, the Rankine-Hugoniot

relations need to be solved before calculating iteratively the streamline, the flow velocity vector, to track the plasma density

flow velocity along the streamline. Naturally, the uncertainty in this calculations depends on the step size (larger uncertainties130

for larger step sizes) and the errors accumulate along the streamline. The method introduced in this work overcomes this

issue by constructing a magnetopause-normal grid system such that computational efforts are improved (no need to solve the

Rankine-Hugoniot relations and the error does not accumulate in the flank region).

3.3 Magnetopause-normal direction as reference

Our mapping method differs from the radial mapping method in that the magnetopause-normal direction is used as a reference135

to the magnetopause. Our method guarantees the grid orthogonality around the magnetopause both on the dayside and in the

flank region. The magnetopause-normal grids are shown in Fig. 3 for the KF magnetosheath model (with parabolic boundaries)

and the empirical magnetosheath model (with non-parabolic boundaries). Even though the exact conformal mapping is not

available, the magnetopause-normal mapping method retains the grid orthogonality around the magnetopause. This feature
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Figure 1. Grid pattern generated by the radial mapping for the Kobel-Flückiger parabolic magnetosheath (left panel) and the non-parabolic,

empirical magnetosheath (right panel).

Figure 2. Velocity potential in the Kobel-Flückiger model (left panel) and its radial mapping onto the non-parabolic empirical boundaries

(right panel). Note that the same function is plotted here for different mapping methods. Contours represent the velocity potential normalized

to the solar wind, Φ(vel)/Ux, which is in units of the planetary radii. The color range is chosen for the visual demonstration purpose from

0.2RE to 90RE (left panel) and from 2RE to 200RE (right panel).

(orthogonality around the magnetopause) plays a crucial role in mapping the scalar potentials. An example of the scalar-140

potential mapping by referring to the magnetopause-normal direction (our final results) are shown in section 4.8.

4 Magnetopause-normal mapping

4.1 Overview of the procedure

The magnetopause-normal mapping is performed with two transformations. In the first transformation, the position vector is

mapped from the empirical magnetosheath r onto the KF magnetosheath model rk. This is based on the assumption that the145

distance to the magnetopause along the magnetopause-normal direction when scaled to the magnetosheath thickness (defined

as the distance from the magnetopause to the bow shock along the magnetopause-normal direction) remains constant. The

azimuthal angle ϕ is the same between the empirical magnetosheath and the KF model. The first transformation is divided into
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Figure 3. Mesh pattern used in the magnetopause-normal mapping in this work for the parabolic boundaries (left panel) and the non-

parabolic, empirical boundaries (right panel).

computing the distance to the magnetopause (step 1), the thickness of the empirical magnetosheath (step 2), the thickness of

the KF magnetosheath (step 3), and the mapping of the position vector onto the KF model(step 4).150

In the second transformation, the mapped position vector is used to compute the shell variable v and the connector variable

u (step 5) and to obtain the potentials and the stream function in the empirical magnetosheath using Eqs. (10), (13), and (15)

(step 6). Here again, the azimuthal angle ϕ is treated as the same.

Figure 4 illustrates the mapping procedure and graphically explains the variables that need to be determined to perform the

mapping such as the zenith angle θmp associated with the mimimum distance to the magnetopause the distance from the planet155

to the bow shock rbs, the distance from the planet to the magnetopause rmp, the relative distance to the magnetopause αemp,

and the magnetosheath thickness α(bs)
emp. The position vector r, the bow shock stand-off distance Rbs, the bow shock shape, the

magnetopause stand-off distance Rmp, and the magnetopause shape are assumed to be known in our mapping.

rbs

θmp

r
αemp

αemp
(bs)

rmp

magnetopause

bow shockupstream
flow

RmpRbs

Figure 4. Variables used in the magnetopause-normal mapping with the zenith angle θmp along the direction nearest to the magnetopause,

the radial distance to the bow shock and magnetopause along the magnetosheath-normal direction (rbs and rmp, respectively), the distance

from the magnetosheath to the magnetopause αemp, the magnetopause thickness α(bs)
emp. The position vector is denoted by r. The bow shock

and magnetopause stand-off distances are denoted by Rbs and Rmp), respectively.
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4.2 Setup

We begin with a position vector in the empirical magnetosheath domain, and express the position vector as r = xex+yey+zez .160

Hereafter, we present the mapping procedure in the two-dimensional plane spanning the x and y directions for simplicity, but the

computation in three dimensions is straightforward by representing the y component of position vector in the cylindrical fashion

as ρcosϕ and the z component into ρsinϕ using the distance ρ to the x axis. The boundaries (bow shock and magnetopause)

are specified by the users and do not need to be parabolic. In this paper, we use the following bow shock and magnetopause

models.165

– The empirical bow shock position expressed in GSE (Geocentric Solar Ecliptic) coordinates proposed and discussed by

Farris et al. (1991); Cairns et al. (1995)

x = Rbs − bemp y
2, (16)

where Rbs is the bow shock stand-off distance and bemp is the empirical flaring parameter. We note here that the original

Farris empirical bow shock model is not a paraboloid model, it is an ellipsoid model (with an eccentricity of 0.81),170

describing the bow shock on the dayside. It is not a proper representation of the far flank bow shock. Also, the Cairns

paraboloid bow shock model does not properly represent the far flank bow shock. The distant bow shock shape ap-

proaches that of a hyperboloid.

– The empirical magnetopause position by Shue et al. (1997):

x2 + y2 −
4R4

mp

4R2
mp − y2

= 0, (17)175

in the Cartesian representation and

rmp =Rmp

√
2

1+ cosθ
. (18)

in the polar representation.

We use a specific exponent for the Shue model (with an alpha exponent of 0.5) in an effort to show that the analytic model

is ‘simple’. The solar wind conditions for which this exponent is applicable is not often encountered (e.g., interplanetary180

magnetic field has the Bz component larger than +8 nT, with specific values of solar wind dynamic pressure).

In our setup, the radial distance from the planet to the bow shock is expressed as (see appendix)

rbs =
1

2bemp sin2 θ

(
−cosθ+

√
1− (1− 4bempRbs)sin

2 θ

)
. (19)
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The radial distance to the magnetopause is given conveniently by Eq. (18). The Shue model reproduces the magnetopause185

stand-off distance Rmp in the subsolar direction (θ = 0), and the cylindrical distance asymptotes to 2Rmp in the tail. It is worth

noting here that one needs to compute the radial distance from the planet to the bow shock or magnetopause as a function of

the zenith angle when using different shapes.

4.3 Step 1: Measuring the distance to magnetopause

In the first step, the distance from the given position in the magnetosheath to the nearest magnetopause is computed (see Fig.190

5). We express the position vector along the magnetopause-normal direction as

r = rmp +αempemp, (20)

where rmp is the magnetopause position nearest to the position vector, and emp is the unit vector in the magnetopause-normal

direction. The unit vector points away from the planet and satisfies the condition

rmp · emp > 0 (21)195

The symbol αemp is the distance to the magnetopause along the magnetopause-normal direction emp in the empirical magne-

tosheath.

The nearest magnetopause position is obtained by searching for the zenith angle θmp for the minimum distance from the

sample position to the magnetopause. The distance D is defined as

D =
√

(rx − rmp cosθmp)2 +(ry − rmp sinθmp)2. (22)200

The search for the minimum distance is implemented in a brute-force fashion as a function of µmp = cosθmp in our study.

θmp

r

αemp

rmp

empirical 
magnetopause

empirical 
bow shock

RmpRbs

Figure 5. Measuring the distance to the empirical magnetopause (Step 1).

Using the minimum distance to the magnetopause rmp and the zenith angle θmp, we are ready to compute the magnetopause-

normal direction and the distance αemp. To obtain the magnetopause-normal direction, we define the magnetopause shape

function fmp as

fmp = x2 + y2 −
4R4

mp

4R2
mp − y2

, (23)205
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and compute the normal direction by the gradient of fmp as

∂fmp

∂x
= 2x (24)

∂fmp

∂y
= 2y

[
1−

4R4
mp

(4R2
mp − y2)2

]
. (25)

The magnetopause-normal direction is obtained by normalizing the gradient vector (∂xfmp,∂yfmp) and representing with

the basis vectors (ex and ey) as210

emp =
sgn√

(∂xfmp)2 +(∂yfmp)2
×

(∂xfmp ex + ∂yfmp ey) (26)

evaluated at the magnetopause (x= rmp cosθmp and y = rmp sinθmp). The magnetopause-normal vector emp has a unit length,

and the sign (sgn =±1) is chosen such that the normal vector is pointing outward (Eq. 21). The distance αemp to the magne-

topause along the normal direction is obtained from Eq. (20) as215

αemp =
(x− rmp cosθmp)+ (y− rmp sinθmp)

emp · ex + emp · ey
(27)

Equation (27) is constructed to be robust against the singular behavior on the dayside (emp·ey = 0) and in distant tail (emp·ex =

0).

4.4 Step 2: Computing the thickness of empirical magnetosheath

In the second step, the magnetosheath thickness is computed using the position vector and the magnetopause normal direction220

(Fig. 6). For our mapping purpose, the distance αemp is normalized to the magnetosheath thickness α(bs)
emp such that the relative

distance αemp/α
(bs)
emp serves as an invariant of the mapping from the empirical magnetosheath onto the KF magnetosheath.

To achieve this, we combine Eq. (16) with Eq. (20), and analytically determine the thickness from the bow shock to the

magnetopause in the empirical magnetosheath. That is, the thickness α(bs)
emp is obtained by rewriting the bow shock quadratic

equation (Eq. 16) for the position vector using the variable α
(bs)
emp (Eq. 20) extended to the bow shock location. The equation is225

again quadratic, and the solution is algebraically obtained as:

α(bs)
emp =

1

2bemp e2mp,y

×[
−(emp,x +2bemp ympemp,y)

2 + dα
]
, (28)

where dα is an auxiliary variable defined as

dα = [(emp,x +2bemp ymp emp,y)
2 −230

4bemp e2mp,y ×

(xmp + bemp y2mp −Rbs)]
1/2. (29)
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In the subsolar direction (ymp = 0), the thickness is simply given as

α(bs)
emp =Rbs −Rmp. (30)

Equation (28) becomes singular in the subsolar direction and Eq. (30) needs to be set separately.235

αemp
(bs)

empirical
magnetopause

empirical 
bow shock

RmpRbs

Figure 6. Computing the magnetosheath thickness in the empirical model (Step 2).

4.5 Step 3: Computing the magnetosheath thickness in the KF system

In the third step, the magnetosheath thickness is computed in the KF model (Fig. 7). We repeat the procedures of steps 1 and 2

for the KF system and determine the KF magnetosheath thickness as reference. We treat the zenith angle θmp and the relative

distance αemp/α
(bs)
emp as invariants of the mapping between the empirical magnetosheath and the KF system. The KF bow shock

location is given as240

x=Rbs − bky
2, (31)

where the KF bow-shock flaring parameter bk is pre-fixed as (Kobel and Flückiger, 1994)

bk =
1

4Rbs − 2Rmp
. (32)

The radial distance from the planet to the KF bow shock is

r
(k)
bs =

1

2bk sin
2 θ

×245 (
−cosθ+

√
1+ (4bkRbs − 1)sin2 θ

)
. (33)

The KF magnetopause is defined in Kobel and Flückiger (1994) as

x=Rmp −
1

2Rmp
y2. (34)

From Eq. (34) the radial distance from the planet to the KF magnetopause is computed as

r(k)mp =
Rmp

sin2 θ

(
−cosθ+

√
1+ sin2 θ

)
. (35)250
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To obtain the magnetopause-normal direction in the KF system, we compute the gradient of the magnetopause shape function:

f (k)
mp = x−Rmp +

1

2Rmp
y2. (36)

The gradient is analytically given as

∂f
(k)
mp

∂x
= 1 (37)255

∂f
(k)
mp

∂y
=

y

Rmp
(38)

The magnetopause-normal direction e
(k)
mp is then obtained by applying Eqs. (37) and (38) to Eq. (26), which reads as

e(k)mp =
sgn√

(∂xf
(k)
mp)2 +(∂yf

(k)
mp)2

×

(
∂xf

(k)
mp ex + ∂yf

(k)
mp ey

)
(39)

αK
(bs)

KF magnetopause

KF bow shock

RmpRbs

Figure 7. Computing the magnetosheath thickness in the KF model (Step 3). The same zenith angle as that in step 2 is used.
260

The thickness in the KF system α
(bs)
k is determined by combining the bow shock shape (Eq. 31) with the position vector at

the bow shock:

r
(k)
bs = r(k)mp +α

(bs)
k e(k)mp. (40)

Equation (31) becomes again a quadratic equation with respect to the thickness α(bs)
k , and the solution reads:

α
(bs)
k =

1

2bk (e
(k)
mp,y)2

×265

[−(e(k)mp,x +2bk ymp e(k)mp,y)+ d(k)α ] (41)

where the auxiliary variable d
(k)
α is defined as

d(k)α = [(e(k)mp,x +2bk ymp e(k)mp,y)
2 −

−4bk (e
(k)
mp,y)

2(xmp + bk y
2
mp −Rbs)]

1/2. (42)
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270

4.6 Step 4: Mapping the position vector onto the KF system

In the fourth step, the mapping of the position vector is performed from the empirical magnetosheath onto the KF system

(Fig. 8). Assumption is made such that the relative distance to the magnetopause along the magnetopause-normal direction

is the same between the two systems. The distance from the magnetosheath position vector to the magnetopause along the

magnetopause-normal direction in the KF system αk is then determined by the relative distance in the empirical magnetosheath275

αemp, the thickness of the empirical magnetosheath αbs
emp, and magnetosheath thickness in the KF system α

(bs)
k as

αk = αemp α
(bs)
k /α(bs)

emp. (43)

The mapped position vector is then computed as

r(k) = r(k)mp +αk e
(k)
mp, (44)

using the nearest magnetopause position r
(k)
mp (Eq. 35), the magnetosheath-to-magnetopause distance αk (Eq. 43), and the280

magnetopause-normal direction e
(k)
mp (Eq. 39).

αK
KF magnetopause

KF bow shock

RmpRbs

r K

Figure 8. Mapping the position vector onto the KF magnetosheath model (Step 4).

4.7 Step 5: Evaluating the shell and connector variables

In the fifth step, the shell variable v and the connector variable u are computed from the mapped position vector r(k) using

Eqs. (1) and (2). respectively. The variables v and u are the same as the parabolic coordinates used in the KF potential with a

focus at x0 =Rmp/2. In our algorithm, the focus is explicitly given in Eqs. (1), (2), and (3). The azimuthal angle around the285

symmetry axis ϕ is treated in the same way as in the KF model.

Figure 10 compares the iso-contours of the shell v and the connector u represented in the KF system (left panel) and the

empirical magnetosheath (right panel) for a bow shock stand-off distance of 12.8 RE (Génot et al., 2011), a bow shock flaring

of 0.0223R−1
E , (Farris et al., 1991; Cairns et al., 1995), and a magnetopause stand-off distance 9.8 RE (Génot et al., 2011).

The shell variable v is characterized by the lines with the curvature center on the right side in the panel, and contains the290

13



KF magnetopause

KF bow shock

RmpRbs

r K

v-contouru-contour

Figure 9. Evaluating the shell variable v and the connector variable u in the KF magnetosheath model (Step 5).

Figure 10. Iso-contour lines with u= const. (center of curvature on the left side) and that with v = const. (center of curvature on the right

side) in the KF magnetosheath model (left panel) and the empirical magnetosheath model (right panel). The bow shock stand-off distance is

12.8 Earth radii and the magnetopause stand-off distance is 9.8 Earth radii.

parabolic bow shock (at v = vbs) and magnetopause (at v = vmp) marked by thick lines. The connector variable u has the

curvature center on the left side in the panel, and the iso-contour lines are orthogonal to the bow shock and magnetopause. The

computation of the u and v variables and their gradient and curl is performed in Cartesian coordinates so that the connection

represented by the Christoffel symbol vanish in the computation. Computation in the Cartesian domain is also beneficial to the

practical application because spacecraft trajectories are often represented in the Cartesian coordinates.295

4.8 Step 6: Computing the potentials and stream function

The scalar potentials (velocity potential and magnetic potential) and the stream function are obtained from the shell v and the

connector u using Eqs. (10), (13), and (15). The velocity potential (normalized to the upstream flow) is displayed in Fig. 11

left panel, and the stream function in right panel. The iso-contours of the velocity potential represent the lines of the same

flow velocity. The iso-contours of the stream function represent the streamlines in the magnetosheath. The flow is deflected300

around the nose of the magnetopause (the subsolar point) and the streamlines are tangential to the magnetopause. Due to the
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Figure 11. Velocity potential (left panel) and stream function (right panel) in the empirical magnetosheath domain obtained by mapping onto

the shell variable v and the connector variable u. Note that two different functions are plotted here for the same grid and mapping method.

The color range is chosen for the visual demonstration from 5.5RE to 314RE (left panel) and from 0RE to 15RE (right panel).

Figure 12. Magnetic potential for the upstream magnetic field with an angle of 135 degree to the x axis (45 degree to the upstream flow

direction, (left panel) and sampled magnetic field vectors obtained by the negative gradient of the magnetic potential (right panel). The color

range of the magnetic potential is from −35RE to 348RE.

grid orthogonality around the magnetopause, the streamlines are constructed as tangential to the magnetopause shape, which

qualifies the magnetopause-normal mapping method as a useful tool for the magnetosheath model.

The magnetic potential and the derived magnetic field are displayed in Fig. 12. The magnetic potential and the magnetic field

(the gradient of the potential multiplied by the minus sign) depend on the upstream field. Fig. 12 shows an example with an305

upstream field angle of 135 degree to the x axis (i.e., 45 degree to the upstream flow direction). The magnetic field is computed

using the central difference scheme. Near the boundaries (bow shock or magnetopause), the mesh resolution is enhanced so

that the mesh points do not cross the boundary when computing with the central difference scheme. The upstream field is

deflected on the positive y side (right panel, lower half plane), and is draping the magnetopause on the negative y side (right

panel, upper half plane).310
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Figure 13. Mesh pattern applied to different values of the Shue exponent for an open-type magnetopause αmp = 0.6 (left panel) and a

closed-type magnetopause αmp = 0.4 (right panel).

5 Discussions

5.1 Extension of the mapping approach

It is straightforward to extend our method to different shapes of the Shue magneotpause model. The following form of gradient

can be used for a general value of the Shue exponent αmp,

∂fmp

∂x
= cosθ+

2αmpRmpα

r
(1+ cosθ)

−(αmp+1)
sin2 θ (45)315

∂fmp

∂y
= sinθ−

2αmpRmpα

r
(1+ cosθ)

−(αmp+1)
cosθ sinθ, (46)

where fmp in Eqs. (45)–(46) is defined as

fmp = r−Rmp

(
2

1+ cosθ

)αmp

. (47)

Mesh pattern applied to different values of the Shue exponent for an open-type magnetopause αmp = 0.6 (Fig. 13 left panel)

and a closed-type magnetopause αmp = 0.4 (Fig. 13 right panel).320

Also, our method can be extended to a three-dimensional, non-axisymmetric geometry of magnetosheath (e.g., Dimmock

and Nykyri, 2013). To achieve this goal, a suitable set of the variables needs to be found for the mapping: the shell variable,

the connector variable, and the aximuthal angle around the subsolar axis (solar wind direction intersecting the planetary mag-

netic dipole). Namely, one needs to give a non-axisymmetric bow shock shape and a non-axisymmetric magnetopause shape,

compute the magnetopause-normal direction and constructing grids in the magnetosheath, measure the distance to the magne-325

topause and the bow shock, scale and relate the distance to the KF model, and evaluate the scalar potentials through the u, v,

and ϕ variables.

5.2 Other approaches

It is possible to obtain the steady-state magnetosheath potential in different ways.
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– First, one may numerically solve the Laplace equation for a given set of boundary shapes (bow shock and magnetopause).330

Various numerical solvers are known for solving the Laplace equation such as the Jacobi method, the Gauss-Seidel

method, and the successive over-relaxation (SOR) method. These Laplace solvers are numerically more expensive than

the mapping method, but the computation in 3-D is feasible with the contemporary computational resources. On the

other hand, the magnetosheath is not bounded, but extends in the tail direction. The challenge here is thus to construct a

properly bounded area for the Laplace equation.335

– Second, one may expand the magnetosheath magnetic field in different orthogonal functions. The KF solution makes

use of the Bessel functions (Kobel and Flückiger, 1994). For flexible magnetopause and bow shock boundary models,

a magnetosheath magnetic field model is constructed by making use of Legendre polynomials (Romashets and Vandas,

2019).

– Third, one may introduce a suitable conformal mapping by limitinng the magnetosheath modeling to a complex plane340

(two-dimensional domain). The harmonic functions such as the KF solution are transformed from the parabolic magne-

tosheath shape into the non-axisymmetric mganetosheath shape. The problem here is that finding the conformal mapping

is not an easy task because the magnetosheath is not a spatially-closed domain and one has to set the boundary in the

magnetosheath to complete the domain bounded by the bow shock, the subsolar axis, and the magnetopause.

– Fourth, one may solve the Rankine-Hugoniot relations and track the streamline step-wise by refererring to the KF solu-345

tion, as is done in Soucek and Escoubet (2012). This method computes the magnetosheath flow and magnetic field along

the streamline, and the computing for the entire magnetosheath domain is numerically expensive.

6 Concluding remark

Our potential mapping method may be regarded as an updated version of the radial mapping method (Soucek and Escoubet,

2012) by retaining the orthogonality near the magnetopause in the flank to tail region and also by computing the field through350

the potential mapping. Velocity potential, stream function, and magnetic potential are evaluated in the empirical magnetosheath.

The advantages of our methods are as follows.

1. The method makes extensive use of the exact solution of the Laplace equation (the Kobel-Flückiger potential and the

Guicking stream function). The plasma flow and magnetic field can be determined semi-analytically in a wide range of

zenith angle in the magnetosheath when the solar wind conditions and the boundary shapes are given.355

2. The method is applicable to a non-parabolic shape of magnetosheath domain, opening the door to develop a tool to assist

numerical simulations and spacecraft observations of not only the Earth but also the planetary magnetosheath domain.

3. The method is computationally inexpensive. In particular, if the shape of bow shock and magnetopause is analytically

given, most of the computational steps in the potential mapping method have an analytic expression.
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As stated in section 1, one ideally needs to find a conformal mapping from the KF magnetosheath model onto the empirical360

magnetosheath. While the conformal mapping is known both for the empirical bow shock and the empirical magnetopause, the

conformal mapping of the entire magnetosheath domain still remains a challenge. There are two problems with this approach.

First, the closing boundary (the u-contours) connecting between the bow shock and the magnetopause is not known, and

moreover, the uniqueness of finding such a boundary is not guaranteed. Second, the gradients along u are not the same between

the empirical bow shock and the empirical magnetopause such that a naive transfinite interpolation ends up with highly non-365

orthogonal grids in the magnetosheath.

Our method of computing the plasma flow and magnetic field should be compared against the observations and simulations.

For example, THEMIS and ARTEMIS spacecraft (Angelopoulos, 2008) and MMS spacecraft (Burch et al., 2016) are providing

a huge amount of data on both sides of the bow shock in the equatorial plane; Cluster spacecraft (Escoubet et al., 2001) are

collecting data in polar orbit; ACE spacecraft data (Stone et al., 1998) may be used as an upstream monitor; and Earth flyby data370

of planetary missions (such as Cassini, BepiColombo) cover the far-distance tail region. In reality, non-axisymmetric structure

arises in the magnetosheath. There is no restriction regarding the choice of the magnetopause model. The magnetopause-normal

direction needs to be computed either analytically using the gradient of the magnetopause function as ∇fmp, or numerically

for a user-defined magnetopause shape.

Appendix: Planet-to-bow shock distance375

By introducing the zenith angle θ and inserting x= rbs cosθ and y = rbs sinθ in Eq. 16), we obtain the equation for the radial

distance to the empirical bow shock:

bemp r
2
bs sin

2 θ+ rbs cosθ−Rbs = 0. (48)

Equation (48) can be algebraically solved, and we take the positive value of the solution as presented in Eq. (19).
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