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Abstract. The steady-state magnetosheath model has various applications in studying the plasma and magnetic field profile

around the planetary magnetospheres In particular, the magnetosheath model is analytically obtained by solving the Laplace

equation for parabolic boundaries (bow shock and magnetopause). We address the question “How can we utilize the mag-

netosheath model by transforming into a more general, empirical, non-parabolic magnetosheath geometry?” To achieve the

goal, we develop the scalar-potential mapping method which provides a semi-analytic estimate of steady-state flow velocity5

and magnetic field in the empirical magnetosheath domain. The method makes use of a coordinate transformation from the

empirical magnetosheath domain into the parabolic magnetosheath domain, and evaluate a set of the shell variable and the

connector variable to utilize the solutions of Laplace equation obtained for the parabolic magnetosheath domain. Our model

uses two invariants of transformation: the zenith angle in the magnetosheath and the ratio of the distance to the magnetopause

to the thickness of magnetosheath along the magnetopause-normal direction. The use of magnetopause-normal direction makes10

a marked difference from the earlier model construction using the radial direction as reference. The plasma flow and magnetic

field can be determined as a function of the upstream condition (flow velocity or magnetic field) in a wide range of zenith angle.

The scalar-potential mapping method is computationally inexpensive by using the analytic expression as much as possible, is

applicable to various planetary magnetosheath domains.

1 Introduction15

Steady-state plasma flow and magnetic field can be regarded as a realization of potential field in the planetary magnetosheath

region when the vorticity and the electric current are treated as ignored. In such a case, the potential is obtained by solving

the Laplace equation, which was elegantly and analytically solved by Kobel and Flückiger (1994) for a parabolic shape of

magnetosheath (hereafter KF). The KF potential was further extended to the stream function in the magnetosheath by Guicking

et al. (2012). The KF solution made a series of breakthroughs in the magnetosheath research. One of the most successful20

applications is the ability to track the plasma parcel along the streamline in the modeled magnetosheath. The tracking method

was extensively used to observationally study the mirror mode growth (e.g., Tatrallyay et al., 2002; Génot et al., 2011) and the

streamwise turbulence evolution in the magnetosheath (Guicking et al., 2012). Predictive models of plasma flow and magnetic

field serve as a useful tool when combined with the numerical simulation or the observational data.

The KF potential is obtained on the assumption that the planetary bow shock and magnetopause have a parabolic shape25

sharing the same focal point. Empirical models of the bow shock and magnetopause (fitted to the spacecraft data), on the other
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hand, are not necessarily parabolically or co-focally shaped. For example, the empirical Earth bow shock model by Farris et al.

(1991) and Cairns et al. (1995) has a parabolic shape but the focal point differs from that of the KF solution; the empirical

magnetopause model by Shue et al. (1997) applies a power-law scaling to the parabolic shape such that the magnetic field lines

appear stretched in the tail region. The gap between the KF parabolic magnetosheath and the empirical magnetosheath needs30

to be filled when applying the KF potential in the empirical magnetosheath.

Naively speaking, one wishes to find a conformal mapping (angle-preserving mapping) from the KF parabolic magne-

tosheath onto an non-parabolic shape of empirical magnetosheath such as the analytic extension of magnetopause shape (Narita

et al., 2023). However, no general mathematical algorithm is known so far to obtain the conformal mapping when the spatial

domain is not properly bounded. The problem lies in the fact that the magnetosheath is bounded only by two sides, i.e., the35

standing shock and the magnetopause in the radial direction to the planet, but not bounded along the flow in the tail region. The

algorithms of numerical conformal mapping are so far proposed for spatially bounded domains (Papamichael and Whiteman,

1973; Chakravarthy and Anderson, 1979; Fornberg, 1980; Karageorghis et al., 1996) or domains with a closed shape of internal

boundaries (Wei et al., 2014).

Here we addresss the question “How can we utilize the KF magnetosheath model by transforming into a more general,40

empirical, non-parabolic magnetosheath geometry?” To achieve the goal, we develop a mapping method which provides a semi-

analytic estimate of steady-state flow velocity and magnetic field in the empirical magnetosheath domain. Our scalar-potential

mapping method is computationally inexpensive by using the analytic expression as much as possible, and is applicable to

various planetary magnetosheath domains.

This work is organized in the following fashion. After reviewing the magnetosheath model constructed by Kobel and Flück-45

iger (1994) (section 2 and discussing different mapping methods (section 3), the detailed procedure of the magnetopause-

normal mapping is presented (section 4) with concluding remark (section 5).

2 Revisiting the magnetosheath scalar potential

2.1 Parabolic coordinates

In the KF parabolic coordinates, the shell variable v and the connector u play an important role in computing the flow velocity50

and magnetic field in the magnetosheath. These variables are explicitly evaluated using Cartesian coordinates and the radial

distance from the focal point as

v =
√

r0 +(xk −x0) (1)

u =
√

r0 − (xk −x0), (2)

where r0 is the distance to the focus at x0:55

r0 =
√
(xk −x0)2 + y2k + z2k. (3)
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The focus is along the x axis, and is defined as

x0 =
1

2
Rmp. (4)

xk, yk, and zk are the Cartesian representation of the KF magnetosheath model (i.e., with the pre-fixed bow shock and magne-

topause shapes) obtained by projecting the position vector onto the unit vectors ex, ey , and ez:60

xk = r(k) · ex (5)

yk = r(k) · ey (6)

zk = r(k) · ez. (7)

To complete the variable set for computing the potentials and the stream function, the azimuthal angle ϕ is introduced as

ϕ= atan(zk/yk). (8)65

2.2 Velocity potential

In the frame of potential field theory, the flow velocity U is obtained from the velocity potential (scalar potential) Φ(vel) as

U =−∇Φ(vel) =−∇× (Ψeϕ) . (9)

The symbol eϕ is the unit vector in the azimuthal directions around the symmetry axis (Sun-to-planet direction). Kobel and70

Flückiger (1994) and Guicking et al. (2012) obtained the analytic expression of the velocity potential Φ(vel) using the shell

variable v (iso-contour lines enveloping the magnetosphere) and the connector variable u (iso-contour lines connecting from

the bow shock to the magnetopause).

Φ(vel) = −Ux

(
v2mpv

2
bs

v2bs − v2mp

)(
u2 − v2

2v2bs
+ lnv

)
−

1

2
Ux

(
u2 − v2

)
+Φ

(vel)
0 , (10)75

where Ux is the upstream flow velocity, vmp the shell variable at the magnetopause, vbs the shell variable at the bow shock, v

the shell variable, u the connector variable, and Φ
(vel)
0 a free parameter (integration constant) which is set to zero without loss

of generality. The boundary shell values vmp and vbs contain the information on the stand-off distances (Rmp and Rbs) in the

subsolar region, and are defined by Kobel and Flückiger (1994) as

vmp =
√
Rmp (11)80

vbs =
√
2Rbs −Rmp. (12)
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2.3 Stream function

Guicking et al. (2012) transformed the KF potential and obtained analytically the stream function Ψ as a function of the shell

variable and the connector variable:

Ψ = −1

2
Ux

(
v2mpv

2
bs

v2bs − v2mp

)
u

v

(
v2

v2bs
− 1

)
− 1

2
Uxuv. (13)85

Hereafter, one may set Ux =−1 so that the velocity potential Φ(vel) is normalized to the upstream velocity. Isocontour lines

of the stream function represent the streamline.

2.4 Magnetic scalar potential

The magnetic field in the magnetosheath is derived from the scalar potential in the same fashion as the flow velocity, that is,

B =−∇Φ(mag). (14)90

The magnetic potential is a function of the shell variable v and the connector u (Kobel and Flückiger, 1994):

Φ(mag) = −
v2mpv

2
bs

v2bs − v2mp

×[(
B(up)

y cosϕ+B(up)
z sinϕ

)
u

(
1

v
+

v

v2bs

)
+

B(up)
x

(
u2 − v2

2v2bs
+ lnv

)]
−B(up)

x (−x)−B(up)
y y−B(up)

z z+Φ
(mag)
0 , (15)95

where B
(up)
x is the sunward component of the upstream magnetic field (corresponding to the GSE-X in near-Earth space), and

B
(up)
y and B

(up)
z are two components of the upstream magnetic field perpendicular to the x direction. ϕ is the azimuthal angle

of the position around the symmetry axis (the y direction is given by the angle ϕ= 0). The integration constant is chosen as

Φ
(mag)
0 = 0. The magnetic potential cannot be further transformed into the form of stream function since the magnetic field

distribution is essentially three-dimensional in the magnetosheath.100

3 Mapping method comparison

3.1 Mapping problem

Our task is to find the shell variable v and the connector u in the empirical magnetosheath by finding a suitable mapping of

the position vector from the empirical magnetosheath (denoted by r) onto the KF parabolic system (denoted by r(k)). The

evaluated v and u are then readily used to obtain the scalar potentials and the stream function. The flow velocity and the105

magnetic field in the empirical magnetosheath are obtained by computing the gradient of the respective potential.
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A practically useful mapping procedure to utilize the KF potential is proposed by Soucek and Escoubet (2012) by using

the radial direction as a reference. While the radial mapping can reasonably (i.e., with a relatively high accuracy) transform

the KF potential into the empirical magnetosheath domain on the dayside, the mapping quality becomes degraded in the flank

region due to the conversion effect associated with the non-orthogonal grid construction. Our approach makes a difference to110

the radial mapping in using the magnetopause-normal direction as a reference. The azimuthal coordinate ϕ is still orthogonal

to the u and v coordinates. We briefly compare between the two mapping methods here.

3.2 Radial direction as reference

Soucek and Escoubet (2012) presented in their pioneering work an algorithm of radial mapping by transforming the KF

magnetosheath model into a general, empirical magnetosheath shape by referring to the radial direction from the planet and115

scaling the radial position in the magnetosheath to the KF model. While the radial mapping can reasonably (i.e., with a

relatively high accuracy) transform the KF potential into the empirical magnetosheath domain on the dayside, the mapping

quality becomes degraded in the flank region due to the strongly non-orthogonal grids. Figure 1 displays a comparison of the

radial grids between the KF magnetosheath model and the empirical magnetosheath model. The grids span the radial direction

to the planet and transfinite interpolation between the bow shock and the magnetopause. The radial mapping has a drawback120

in a stronger grid non-orthogonality effect, which causes an artificial converging flow pattern in the flank region (velocity

potential shown in Fig. 2 when the scalar potential is directly transformed. In the Soucek-Escoubet method, the problem of

flow conversion effect was avoided by solving the MHD Rankine-Hugoniot relation and tracking the streamline iteratively

between the KF parabolic magnetosheath model and the empirical magnetosheath model.

Figure 1. Grid pattern generated by the radial mapping for the Kobel-Flückiger parabolic magnetosheath (left panel) and the non-parabolic,

empirical magnetosheath (right panel).

3.3 Magnetopause-normal direction as reference125

Our mapping method makes a difference from the radial mapping method in that the magnetopause-normal direction is used as

a reference to the magnetopause. Our method guarantees the grid orthogonality around the magnetopause both on the dayside

and in the flank region. The magnetopause-normal grids are shown in Fig. 3 for the KF magnetosheath model (with parabolic
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Figure 2. Velocity potential in the Kobel-Flückiger model (left panel) and its radial mapping onto the non-parabolic empirical boundaries

(right panel).

boundaries) and the empirical magnetosheath model (with non-parabolic boundaries). Even though the exact conformal map-

ping is not available, the magnetopause-normal mapping method retains the grid orthogonality around the magnetopause. This130

feature (orthogonality around the magnetopause) plays a crucial role in mapping the scalar potentials. An example of the

scalar-potential mapping by referring to the magnetopause-normal direction (our final results) are shown in section 4.8.

Figure 3. Mesh pattern used in the magnetopause-normal mapping in this work for the parabolic boundaries (left panel) and the non-

parabolic, empirical boundaries (right panel).

4 Magnetopause-normal mapping

4.1 Overview of the procedure

The magnetopause-normal mapping is performed with two transformations. In the first transformation, the position vector is135

mapped from the empirical magnetosheath r onto the KF magnetosheath model rk. This is achieved on the assumption that

the distance to the magnetopause along the magnetopause-normal direction is the same when normalized to the magnetosheath

thickness (defined as the distance from the magnetopause to the bow shock along the magnetopause-normal direction). The
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azimuthal angle ϕ is the same between the empirical magnetosheath and the KF model. The first transformation is divided into

computing the distance to the magnetopause (step 1), the thickness of the empirical magnetosheath (step 2), the thickness of140

the KF magnetosheath (step 3), and the mapping of the position vector onto the KF model(step 4).

In the second transformation, the mapped position vector is used to compute the shell variable v and the connector variable

u (step 5) and to obtain the potentials and the stream function in the empirical magnetosheath using Eqs. (10), (13), and (15)

(step 6). Here again, the azimuthal angle ϕ is treated as the same.

Figure 4 illustrates the mapping procedure and graphically explains the variables that need to be determined to perform145

the mapping such as the zenith angle of the nearest magnetopause θmp, the distance from the planet to the bow shock rbs,

the distance from the planet to the magnetopause rmp, the relative distance to the magnetopause αemp, and the magnetosheath

thickness α(bs)
emp. The position vector r, the bow shock stand-off distance Rbs, the bow shock shape, the magnetopause stand-off

distance Rmp, and the magnetopause shape are assumed to be known in our mapping.

rbs

θmp

r
αemp

αemp
(bs)

rmp

magnetopause

bow shockupstream
flow

RmpRbs

Figure 4. Variables used in the magnetopause-normal mapping with the zenith angle of the nearest magnetopause θmp, the radial distance to

the bow shock and magnetopause along the magnetosheath-normal direction (rbs and rmp, respectively), the distance from the magnetosheath

to the magnetopause αemp, the magnetopause thickness α(bs)
emp. The position vector is denoted by r. The bow shock and magnetopause stand-

off distances are denoted by Rbs and Rmp), respectively.

4.2 Setup150

We begin with a position vector in the empirical magnetosheath domain, and express the position vector as r = xex+yey+zez .

Hereafter, we present the mapping procedure in the two-dimensional plane spanning the x and y directions for simplicity, but the

computation in three dimensions is straightforward by representing the y component of position vector in the cylindrical fashion

as ρcosϕ and the z component into ρsinϕ using the distance ρ to the x axis. The boundaries (bow shock and magnetopause)

are specified by the users and do not need to be parabolic. In this paper, we use the following bow shock and magnetopause155

models.

7



– The empirical bow shock position expressed in GSE (Geocentric Solar Ecliptic) coordinates proposed and discussed by

Farris et al. (1991); Cairns et al. (1995)

x = Rbs − bemp y
2, (16)

where Rbs is the bow shock stand-off distance and bemp is the empirical flaring parameter. We note here that the original160

Farris empirical bow shock model is not a paraboloid model, it is an ellipsoid model (with an eccentricity of 0.81),

describing the bow shock on the dayside. It is not a proper representation of the far flank bow shock. Also, the Cairns

paraboloid bow shock model does not properly represent the far flank bow shock. The distant bow shock shape ap-

proaches that of a hyperboloid.

– The empirical magnetopause position by Shue et al. (1997):165

x2 + y2 −
4R4

mp

4R2
mp − y2

= 0, (17)

in the Cartesian representation and

rmp =Rmp

√
2

1+ cosθ
. (18)

in the polar representation.

We use a specific exponent for the Shue model (with an alpha exponent of 0.5) in an effort to show that the analytic model170

is ‘simple’. The solar wind conditions for which this exponent is applicable is not often encountered (e.g., interplanetary

magnetic field has the Bz component larger than +8 nT, with specific values of solar wind dynamic pressure).

In our setup, the radial distance from the planet to the bow shock is expressed as (see appendix)

rbs =
1

2bemp sin2 θ

(
−cosθ+

√
1− (1− 4bempRbs)sin

2 θ

)
. (19)175

The radial distance to the magnetopause is given conveniently by Eq. (18). The Shue model reproduces the magnetopause

stand-off distance Rmp in the subsolar direction (θ = 0), and the cylindrical distance asymptotes to 2Rmp in the tail. It is worth

noting here that one needs to compute the radial distance from the planet to the bow shock or magnetopause as a function of

the zenith angle when using different shapes.

4.3 Step 1: Measuring the distance to magnetopause180

In the first step, the distance from the given position in the magnetosheath to the nearest magnetopause is computed (see Fig.

5). We express the position vector along the magnetopause-normal direction such as

r = rmp +αempemp, (20)
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where rmp is the magnetopause position nearest to the position vector, and emp is the unit vector in the magnetopause-normal

direction. The unit vector points away from the planet and satisfies the condition185

rmp · emp > 0 (21)

The symbol αemp is the distance to the magnetopause along the magnetopause-normal direction emp in the empirical magne-

tosheath.

The nearest magnetopause position is obtained by searching for the zenith angle θmp for the minimum distance from the

sample position to the magnetopause. The distance D is defined as190

D =
√
(rx − rmp cosθmp)2 +(ry − rmp sinθmp)2. (22)

The search for the minimum distance is implemented in a brute-force fashion as a function of µmp = cosθmp in our study.

θmp

r

αemp

rmp

empirical 
magnetopause

empirical 
bow shock

RmpRbs

Figure 5. Measuring the distance to the empirical magnetopause (Step 1).

Having the nearest magnetopause at a distance of rmp and a zenith angle of θmp, we are ready to compute the magnetopause-

normal direction and the distance αemp. To obtain the magnetopause-normal direction, we define the magnetopause shape

function fmp as195

fmp = x2 + y2 −
4R4

mp

4R2
mp − y2

, (23)

and compute the normal direction by the gradient of fmp as

∂fmp

∂x
= 2x (24)

∂fmp

∂y
= 2y

[
1−

4R4
mp

(4R2
mp − y2)2

]
. (25)

The magnetopause-normal direction is obtained by normalizing the gradient vector (∂xfmp,∂yfmp) and representing with the200

basis vectors (ex and ey) as

emp =
sgn√

(∂xfmp)2 +(∂yfmp)2
×

(∂xfmp ex + ∂yfmp ey) (26)
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evaluated at the magnetopause (x= rmp cosθmp and y = rmp sinθmp). The magnetopause-normal vector emp has a unit length,

and the sign (sgn =±1) is chosen such that the normal vector is pointing outward (Eq. 21). The distance αemp to the magne-205

topause along the normal direction is obtained from Eq. (20) as

αemp =
(x− rmp cosθmp)+ (y− rmp sinθmp)

emp · ex + emp · ey
(27)

Equation (27) is constructed to be robust against the singular behavior on the dayside (emp·ey = 0) and in distant tail (emp·ex =

0).

4.4 Step 2: Computing the thickness of empirical magnetosheath210

In the second step, the magnetosheath thickness is computed using the position vector and the magnetopause normal direction

(Fig. 6). For our mapping purpose, the distance αemp is normalized to the magnetosheath thickness α(bs)
emp such that the relative

distance αemp/α
(bs)
emp serves as an invariant of the mapping from the empirical magnetosheath onto the KF magnetosheath.

To achieve this, we combine Eq. (16) with Eq. (20), and analytically determine the thickness from the bow shock to the

magnetopause in the empirical magnetosheath. That is, the thickness α(bs)
emp is obtained by rewriting the bow shock quadratic215

equation (Eq. 16) for the position vector using the variable α
(bs)
emp (Eq. 20) extended to the bow shock location. The equation is

again quadratic, and the solution is algebraically obtained as:

α(bs)
emp =

1

2bemp e2mp,y

×[
−(emp,x +2bemp ympemp,y)

2 + dα
]
, (28)

where dα is an auxiliary variable defined as220

dα = [(emp,x +2bemp ymp emp,y)
2 −

4bemp e2mp,y ×

(xmp + bemp y2mp −Rbs)]
1/2. (29)

In the subsolar direction (ymp = 0), the thickness is simplify given as

α(bs)
emp =Rbs −Rmp. (30)225

Equations (28) becomes singular in the subsolar direction and Eq. (30) needs to be set separately to avoid the numerical

digergence problem.

4.5 Step 3: Computing the magnetosheath thickness in the KF system

In the third step, the magnetosheath thickness is computed in the KF model (Fig. 7). We repeat the procedures of steps 1 and 2

for the KF system and determine the KF magnetosheath thickness as reference. We treat the zenith angle θmp and the relative230

distance αemp/α
(bs)
emp as invariants of the mapping between the empirical magnetosheath and the KF system. The KF bow shock
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αemp
(bs)

empirical
magnetopause

empirical 
bow shock

RmpRbs

Figure 6. Computing the magnetosheath thickness in the empirical model (Step 2).

location is given as

x=Rbs − bky
2, (31)

where the KF bow-shock flaring parameter bk is pre-fixed as (Kobel and Flückiger, 1994)

bk =
1

4Rbs − 2Rmp
. (32)235

The radial distance from the planet to the KF bow shock is

r
(k)
bs =

1

2bk sin
2 θ

×(
−cosθ+

√
1+ (4bkRbs − 1)sin2 θ

)
. (33)

The KF magnetopause is defined in Kobel and Flückiger (1994) as

x=Rmp −
1

2Rmp
y2. (34)240

From Eq. (34) the radial distance from the planet to the KF magnetopause is computed as

r(k)mp =
Rmp

sin2 θ

(
−cosθ+

√
1+ sin2 θ

)
. (35)

To obtain the magnetopause-normal direction in the KF system, we compute the gradient of the magnetopause shape function:

f (k)
mp = x−Rmp +

1

2Rmp
y2. (36)245

The gradient is analytically given as

∂f
(k)
mp

∂x
= 1 (37)

∂f
(k)
mp

∂y
=

y

Rmp
(38)
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The magnetopause-normal direction e
(k)
mp is then obtained by applying Eqs. (37) and (38) to Eq. (26), which reads as

e(k)mp =
sgn√

(∂xf
(k)
mp)2 +(∂yf

(k)
mp)2

×250

(
∂xf

(k)
mp) ex + ∂yf

(k)
mp) ey

)
(39)

αK
(bs)

KF magnetopause

KF bow shock

RmpRbs

Figure 7. Computing the magnetosheath thickness in the KF model (Step 3). The same zenith angle as that in step 2 is used.

The thickness in the KF system α
(bs)
k is determined by combining the bow shock shape (Eq. 31) with the position vector at

the bow shock:

r
(k)
bs = r(k)mp +α

(bs)
k e(k)mp. (40)255

Equation (31) becomes again a quadratic equation with respect to the thickness α(bs)
k , and the solution reads:

α
(bs)
k =

1

2bk e2mp,y

×

[−(emp,x +2bk ymp emp,y)+ d(k)α ] (41)

where the auxiliary variable d
(k)
α is defined as

d(k)α = [(emp,x +2bk ymp emp,y)
2 −260

−4bk e
2
mp,y(xmp + bky

2
mp −Rbs)]

1/2. (42)

4.6 Step 4: Mapping the position vector onto the KF system

In the fourth step, the mapping of the position vector is performed from the empirical magnetosheath onto the KF system

(Fig. 8). Assumption is made such that the relative distance to the magnetopause along the magnetopause-normal direction

is the same between the two systems. The distance from the magnetosheath position vector to the magnetopause along the265

magnetopause-normal direction in the KF system αk is then determined by the relative distance in the empirical magnetosheath

αemp, the thickness of the empirical magnetosheath αbs
emp, and magnetosheath thickness in the KF system α

(bs)
k as

αk = αemp α
(bs)
k /α(bs)

emp. (43)
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The mapped position vector is then computed as

r(k) = r(k)mp +αk e
(k)
mp, (44)270

using the nearest magnetopause position r
(k)
mp (Eq. 35), the magnetosheath-to-magnetopause distance αk (Eq. 43), and the

magnetopause-normal direction e
(k)
mp (Eq. 39).

αK
KF magnetopause

KF bow shock

RmpRbs

r K

Figure 8. Mapping the position vector onto the KF magnetosheath model (Step 4).

4.7 Step 5: Evaluating the shell and connector variables

In the fifth step, the shell variable v and the connector variable u are computed from the mapped position vector r(k) using

Eqs. (1) and (2). respectively. The variables v and u are the same as the parabolic coordinates used in the KF potential with a275

focus at x0 =Rmp/2. In our algorithm, the focus is explicitly given in Eqs. (1), (2), and (3). The azimuthal angle around the

symmetry axis ϕ is treated in the same way as in the KF model.

KF magnetopause

KF bow shock

RmpRbs

r K

v-contouru-contour

Figure 9. Evaluating the shell variable v and the connector variable u in the KF magnetosheath model (Step 5).

Figure 10 compares the iso-contours of the shell v and the connector u represented in the KF system (left panel) and the

empirical magnetosheath (right panel) for a bow shock stand-off distance of 12.8 RE (Génot et al., 2011), a bow shock flaring

of 0.0223R−1
E , (Farris et al., 1991; Cairns et al., 1995), and a magnetopause stand-off distance 9.8 RE (Génot et al., 2011).280
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Figure 10. Iso-contour lines with u= const. (center of curvature on the left side) and that with v = const. (center of curvature on the right

side) in the KF magnetosheath model (left panel) and the empirical magnetosheath model (right panel). The bow shock stand-off distance is

12.8 Earth radii and the magnetopause stand-off distance is 9.8 Earth radii.

The shell variable v is characterized by the lines with the curvature center on the right side in the panel, and contains the

parabolic bow shock (at v = vbs) and magnetopause (at v = vmp) marked by thick lines. The connector variable u has the

curvature center on the left side in the panel, and the iso-contour lines are orthogonal to the bow shock and magnetopause. The

computation of the u and v variables and their gradient and curl is performed in the Cartesian so that the connection represented

by the Christoffel symbol vanish in the computation. Computation in the Cartesian domain is also beneficial to the practical285

application because spacecraft trajectories are often represented in the Cartesian coordinates.

4.8 Step 6: Computing the potentials and stream function

The scalar potentials (velocity potential and magnetic potential) and the stream function are obtained from the shell v and the

connector u using Eqs. (10), (13), and (15). The velocity potential (normalized to the upstream flow) is displayed in Fig. 11

left panel, and the stream function in right panel. The iso-contours of the velocity potential represent the lines of the same290

flow velocity. The iso-contours of the stream function represent the streamlines in the magnetosheath. The flow is deflected

around the nose of the magnetopause (the subsolar point) and the streamlines are tangential to the magnetopause. Due to the

grid orthogonality around the magnetopause, the streamlines are constructed as tangential to the magnetopause shape, which

qualifies the magnetopause-normal mapping method as a useful tool for the magnetosheath model.

The magnetic potential and the derived magnetic field are displayed in Fig. 12. The magnetic potential and the magnetic field295

(the gradient of the potential multiplied by the minus sign) depend on the upstream field. Fig. 12 shows an example with an

upstream field angle of 135 degree to the x axis (i.e., 45 degree to the upstream flow direction). The magnetic field is computed

using the central difference scheme. Near the boundaries (bow shock or magnetopause), the mesh resolution is enhanced so

that the mesh points do not cross the boundary when computing with the central difference scheme. The upstream field is

deflected on the positive y side (right panel, lower half plane), and is draping the magnetopause on the negative y side (right300

panel, upper half plane).
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Figure 11. Velocity potential (left panel) and stream function (right panel) in the empirical magnetosheath domain obtained by mapping onto

the shell variable v and the connector variable u.

Figure 12. Magnetic potential for the upstream magnetic field with an angle of 135 degree to the x axis (45 degree to the upstream flow

direction, (left panel) and sampled magnetic field vectors obtained by the negative gradient of the magnetic potential (right panel).

5 Concluding remark

Our potential mapping method may be regarded as an updated version of the radial mapping method (Soucek and Escoubet,

2012) by retaining the orthogonality near the magnetopause in the flank to tail region and also by computing the field through

the potential mapping. Velocity potential, stream function, and magnetic potential are evaluated in the empirical magnetosheath.305

The advantages of our methods are as follows.

1. The method makes extensive use of the exact solution of the Laplace equation (the Kobel-Flückiger potential and the

Guicking stream function). The plasma flow and magnetic field can be determined semi-analytically in a wide range of

zenith angle in the magnetosheath when the solar wind conditions and the boundary shapes are given.

2. The method is applicable to a non-parabolic shape of magnetosheath domain, opening the door to develop a tool to assist310

numerical simulations and spacecraft observations of not only the Earth but also the planetary magnetosheath domain.

3. The method is computationally inexpensive. In particular, if the shape of bow shock and magnetopause is analytically

given, most of the computational steps in the potential mapping method have an analytic expression.
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As stated in section 1, one ideally needs to find a conformal mapping from the KF magnetosheath model onto the empirical

magnetosheath. While the conformal mapping is known both for the empirical bow shock and the empirical magnetopause, the315

conformal mapping of the entire magnetosheath domain still remains a challenge. There are two problems on this. First, the

closing boundary (the u-contours) connecting between the bow shock and the magnetopause is not known, and moreover, the

uniqueness of finding such a boundary is not guaranteed. Second, the gradients along u are not the same between the empirical

bow shock and the empirical magnetopause such that a naive transfinite interpolation ends up with highly non-orthogonal grids

in the magnetosheath.320

Our method of computing the plasma flow and magnetic field should be compared against the observations and simulations.

For example, THEMIS and ARTEMIS spacecraft (Angelopoulos, 2008) and MMS spacecraft (Burch et al., 2016) are providing

a huge amount of data on both sides of the bow shock in the equatorial plane; Cluster spacecraft Escoubet et al. (2001) are

collecting data in polar orbit; ACE spacecraft data Stone et al. (1998) may be used as an upstream monitor; and Earth flyby

data of planetary missions (such as Cassini, BepiColombo) cover the far-distance tail region. In reality, non-axisymmetric325

structure arises in the magnetosheath. Our method has the possibility to be extended to three-dimensional, non-axisymmetric

modeling by the use of magnetopause normal mapping. It is possible to obtain the steady-state magnetosheath potential in a

more general sense without referring to the KF94 solution. For example, for a non-axisymmetric geometry of magnetosheath

(e.g., Dimmock and Nykyri, 2013), one may numerically solve the Laplace equation for a given set of boundary shapes (bow

shock and magnetopause). Various numerical solvers are known for solving the Laplace equation such as the Jacobi method,330

the Gauss-Seidel method, and the successive over-relaxation (SOR) method. These Laplace solvers are numerically more

expensive than the mapping method, but the computation in 3-D is feasible with the contemporary computational resources.

Or one may expand the magnetosheath magnetic field in different orthogonal functions. The KF solution makes use of the

Bessel functions (Kobel and Flückiger, 1994). For flexible magnetopause and bow shock boundary models, a magnetosheath

magnetic field model is constructed by making use of Legendre polynomials (Romashets and Vandas, 2019). There is no335

restriction regarding the choice of the magnetopause model. The magnetopause-normal direction needs to be computed either

analytically using the gradient of the magnetopause function as ∇fmp, or numerically for a user-defined magnetopause shape.

Additional references to analytic models of the magnetosheath magnetic field (using expansions in Legendre polynomials)

that make use of flexible magnetopause and bow shock boundary models (e.g., Romashets and Vandas, JGR, [2019])

Appendix: Planet-to-bow shock distance340

By introducing the zenith angle θ and inserting x= rbs cosθ and y = rbs sinθ in Eq. 16), we obtain the equation for the radial

distance to the empirical bow shock:

bemp r
2
bs sin

2 θ+ rbs cosθ−Rbs = 0. (45)

Equation (45) can be algebraically solved, and we take the positive value of the solution as presented in Eq. (19).
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