Referee 1

1. This manuscript describes a methodology for mapping magnetosheath locations
relative to specific empirically-based models for the bow shock and magne-
topause into an equivalent magnetosheath location with boundaries described
by confocal paraboloids. Analytic solutions for plasma streamlines (and po-
tential) and magnetic fields (and magnetic potential) can then be conformally
mapped to a space bounded by more realistic boundaries.

Reply (ref.01.01):

e No, not exactly. We are transforming the magnetosheath scalar potential
not by a conformal mapping but by a non-conformal (and non-orthogonal)
mapping in this manuscript. It is of course ideal if the harmonic func-
tions (given as the solution of Laplace equation) were transformed into
an arbitrarily-bounded magnetosheath using the conformal mapping. Af-
ter extensive theoretical research (both analytically and numerically), it
became clear that the conformal mapping of magnetosheath cannot be
constructed uniquely. The reason for this is that the magnetosheath is not
properly bounded for solving the Laplace equation. The magnetosheath
is bounded only in the radial direction from the planet (or normal to
the magnetopause) by the bow shock and the magnetopause. there is
no boundary along the streamline, and the conformal mapping (Cauchy-
Riemann condition or orthogonality condition) is no longer unique. Nev-
ertheless, the algorithm we develop in the manuscirpt is a useful approach,
because one can utilize the analytic solutions and the algorithm can rel-
atively easily be implemented to various boundary shapes (though we
chose only one example), which is of great help for future planetary re-
search (missions and simulations). We highlight the problem with the
conformal mapping in section 1 (page 2, lines 32-39) and section 5 (page
16, lines 314-320).

2. In general, this article does not represent a significant advancement. It reads
more like an Appendiz of a larger study, with the Appendix detailing a technique
to map locations between confocal, parabolic boundaries and empirically-based
boundaries. While this technique is similar to previous efforts as described by
Soucek and Escoubet [2012], Trattner et al., JGR [2015], and others, there
is no effort here to demonstrate that this particular mapping technique better
matches observations than previous techniques.

Reply (ref.01.02):

e W accept the critique that the manuscript reads more like an appendix
of thesis. This impression comes from the slight mismatch between the
manuscript goal (tool or algorithm development) and the journal scope
(such as scientific message). We aim to develop a numerical grid scheme
for space science applicaitons. Numerical grid schemes are one of the
favored discussion topics in fluid dynamics, computational physics, and
informatics, but not so widely acknowledged in space science journals.
See, for example, a grid generation using the conformal mapping by



Lin and Chandler-Wilde, J. Hydroinformatics, 2, 255-267, 2000 https:
//doi.org/10.2166/hydro.2000.0023. We nevertheless choose AnGeo
for the dissemination of our study because the space science community
should benefit the most from our algorithm development.

The drawback with the radial mapping by Soucek and Escoubet (2012)
is that the quality of mapping (distortion effect due to non-orthogonal
grids) becomes quickly degraded in the flank to distant-tail region. Our
mesh is robust against the distortion effect in the tail region. This point
is elaborated in section 3 (pages 4-6) in the revised manuscript.

3. Some of the references to empirical models of boundary shapes/sizes are in-
consistent with the description provided here, or are examined under extremely
specific solar wind conditions, or do not properly represent the knowledge of
the physical boundaries far down the flank. Specifically,

(a)

(b)

(¢)

The Farris et al., JGR [1991] empirical bow shock model is not a paraboloid
model. It is an ellipsoid model (eccentricity of 0.81), describing the bow
shock on the dayside. It is not a proper representation of the far flank
bow shock.

The Cairns et al., JGR [1995] paraboloid bow shock model also does not
properly represent the far flank bow shock. The distant bow shock shape
approaches that of a hyperboloid.

The authors have selected a wvery specific exponent for the Shue et al.,
JGR [1997] model (alpha = 0.5) in an effort to show that the analytic
model is ‘simple’. The solar wind conditions for which this exponent is
applicable (from the Shue et al. mode) is not often encountered (IMF Bz
¢ +8 nT, with specific values of solar wind dynamic pressure in order that

alpha = 0.5).

Reply (ref.01.03):

True and agreed. We added the referee’s comments (page 8, lines 160-164
and lines 170-172).

4. Additional references to analytic models of the magnetosheath magnetic field
(using expansions in Legendre polynomials) that make use of flexible magne-
topause and bow shock boundary models (e.g., Romashets and Vandas, JGR,
[2019]) should be provided and discussed.

Reply (ref.01.04):

Oh, thank you very much for introducing us this excellent paper! Yes,
we cited the paper (page 16, lines 333-335).

5. Although the claim is made in the manuscript that this technique can be applied
to arbitrary boundary model shapes, it is not demonstrated that under general


https://doi.org/10.2166/hydro.2000.0023
https://doi.org/10.2166/hydro.2000.0023

circumstances, the equations can be written in a closed form.

Reply (ref.01.05):

e Critique is well taken. We changed “arbitrary” into “non-parabolic” as
we applied only one example (page 15, line 310).

. The technique described relies on determining the (straight line, or minimum)
distance from a given point within the magnetosheath to the magnetopause.
This is along the normal direction from the magnetopause. However, Lines
109-110 state that the task is to find the shell variable ‘v’ and the connec-
tor variable ‘v’ in the empirical magnetosheath. However, while the connector
variable ‘u’ of the empirical magnetosheath is normal to the magnetopause sur-
face, it is not a straight line through the magnetosheath? and doesn’t represent
the minimum distance from the given point to the magnetopause. In other
words, the distance from the magnetopause extends over a (narrow) range of
connector variable ‘u’ values.

Reply (ref.01.06):

e The confusion comes from the difference between the grids we used in
the mapping (shown in figure 3, page 6, in the revised manuscript) and
the u-v contours we showed in the original manuscript. We span the
magnetopause-normal grids both in the KF model and in the empirical
model, and here we see straight lines extending to the magnetopause.

. The rationale for the methodology described is confusing. For most implemen-
tations, the solar wind parameters are known, and the corresponding param-
eters at a given point within the magnetosheath are desired. However, the
methodology here is to start with known parameters at a given place within
the magnetosheath (relative to empirical models), conformal map to a location
relative to the KF paraboloid boundaries, calculate the ‘u’ and ‘v’ values and
determine the B-field, streamline, and potentials. The solar wind drivers ap-
pear to be missing. It appears that part of this strategy is based on the Toepfer
et al. [2022] motivation; but a clear description for the order of steps for this
technique is missing.

Reply (ref.01.07):

e Yes, in the case of space plasma missions orbiting the Earth; But no, in
the case of planetary mission (in which even the availability of plasma
data is still chanllenging due to the mass, power budget, and telemetry
budget). The advantage with the manuscript is that one can compute
the magnetosheath potential for various scenarios of upstream conditions
without extensive numerical efforts, assuming that the boundaries (bow
shock and magnetopause) are well parametrized to the solar wind condi-
tion.



8. Several of the equations presented are incorrect. For example, Eq.5 is infinite
everywhere, due to the denominator. How are Eqs. 20 and 23 are used to
derive Eq.24? Why do the units not match for the terms within Eq.39¢ How
do Fqs.31-32 lead to Fq.33 when ymp=07?

Reply (ref.01.08):

e Equation (5). Corrected (page 4, Eq. 13). Thank you!

e It is straightforward to derive Eq. (24) from Eq. (23), but Equation (24)
offers an alternative approach to find the minimum distance to the brute-
force method, but the manuscript can read even withtout this equation.
Equation (24) was deleted in the revised manuscript.

e Equation (39). “2” should read “x” (page 11, Eq. 36). Thank you!

e Equations (31) becomes singular in the subsolar direction and Eq. (33)
needs to be set separately to avoid the numerical digergence problem
(page 10, lines 224-227).
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Abstract. The steady-state magnetosheath model has various applications in studying the plasma and magnetic field profile
around the planetary magnetospheres In particular, the magnetosheath model is analytically obtained by solving the Laplace
equation for parabolic boundaries (bow shock and magnetopause). We address the question “How can we utilize the mag-
netosheath model by transforming into a more general, empirical, non-parabolic magnetosheath geometry?” To achieve the
goal, we develop the scalar-potential mapping method which provides a semi-analytic estimate of steady-state flow velocity
and magnetic field in the empirical magnetosheath domain. The method makes use of a coordinate transformation from the
empirical magnetosheath domain into the parabolic magnetosheath domain, and evaluate a set of the shell variable and the
connector variable to utilize the solutions of Laplace equation obtained for the parabolic magnetosheath domain. Our model
uses two invariants of transformation: the zenith angle in the magnetosheath and the ratio of the distance to the magnetopause
to the thickness of magnetosheath along the magnetopause-normal direction. The use of magnetopause-normal direction makes
a marked difference from the earlier model construction using the radial direction as reference. The plasma flow and magnetic
field can be determined as a function of the upstream condition (flow velocity or magnetic field) in a wide range of zenith angle.
The scalar-potential mapping method is computationally inexpensive by using the analytic expression as much as possible, is

applicable to various planetary magnetosheath domains.

1 Introduction

Steady-state plasma flow and magnetic field can be regarded as a realization of potential field in the planetary magnetosheath
region when the vorticity and the electric current are treated as ignored. In such a case, the potential is obtained by solving
the Laplace equation, which was elegantly and analytically solved by Kobel and Fliickiger (1994) for a parabolic shape of
magnetosheath (hereafter KF). The KF potential was further extended to the stream function in the magnetosheath by Guicking
et al. (2012). The KF solution made a series of breakthroughs in the magnetosheath research. One of the most successful
applications is the ability to track the plasma parcel along the streamline in the modeled magnetosheath. The tracking method
was extensively used to observationally study the mirror mode growth (e.g., Tatrallyay et al., 2002; Génot et al., 2011) and the
streamwise turbulence evolution in the magnetosheath (Guicking et al., 2012). Predictive models of plasma flow and magnetic
field serve as a useful tool when combined with the numerical simulation or the observational data.

The KF potential is obtained on the assumption that the planetary bow shock and magnetopause have a parabolic shape

sharing the same focal point. Empirical models of the bow shock and magnetopause (fitted to the spacecraft data), on the other
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hand, are not necessarily parabolically or co-focally shaped. For example, the empirical Earth bow shock model by Farris et al.
(1991) and Cairns et al. (1995) has a parabolic shape but the focal point differs from that of the KF solution; the empirical
magnetopause model by Shue et al. (1997) applies a power-law scaling to the parabolic shape such that the magnetic field lines
appear stretched in the tail region. The gap between the KF parabolic magnetosheath and the empirical magnetosheath needs
to be filled when applying the KF potential in the empirical magnetosheath.

Naively speaking, one wishes to find a conformal mapping (angle-preserving mapping) from the KF parabolic magne-
tosheath onto an non-parabolic shape of empirical magnetosheath such as the analytic extension of magnetopause shape (Narita
et al., 2023). However, no general mathematical algorithm is known so far to obtain the conformal mapping when the spatial
domain is not properly bounded. The problem lies in the fact that the magnetosheath is bounded only by two sides, i.e., the
standing shock and the magnetopause in the radial direction to the planet, but not bounded along the flow in the tail region. The
algorithms of numerical conformal mapping are so far proposed for spatially bounded domains (Papamichael and Whiteman,
1973; Chakravarthy and Anderson, 1979; Fornberg, 1980; Karageorghis et al., 1996) or domains with a closed shape of internal
boundaries (Wei et al., 2014).

Here we addresss the question “How can we utilize the KF magnetosheath model by transforming into a more general,
empirical, non-parabolic magnetosheath geometry?” To achieve the goal, we develop a mapping method which provides a semi-
analytic estimate of steady-state flow velocity and magnetic field in the empirical magnetosheath domain. Our scalar-potential
mapping method is computationally inexpensive by using the analytic expression as much as possible, and is applicable to
various planetary magnetosheath domains.

This work is organized in the following fashion. After reviewing the magnetosheath model constructed by Kobel and Fliick-
iger (1994) (section 2 and discussing different mapping methods (section 3), the detailed procedure of the magnetopause-

normal mapping is presented (section 4) with concluding remark (section 5).

2 Revisiting the magnetosheath scalar potential

2.1 Parabolic coordinates

In the KF parabolic coordinates, the shell variable v and the connector u play an important role in computing the flow velocity
and magnetic field in the magnetosheath. These variables are explicitly evaluated using Cartesian coordinates and the radial

distance from the focal point as

vo= ro+ (zx — o) (D
u = y/ro— (K — T0), (2)

where g is the distance to the focus at zq:

To = \/(mk—$0)2+y§+2§- 3)
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The focus is along the x axis, and is defined as

1
To = iRmp (4)

Tk, Yk, and zi are the Cartesian representation of the KF magnetosheath model (i.e., with the pre-fixed bow shock and magne-

topause shapes) obtained by projecting the position vector onto the unit vectors e, e,, and e:

z = rM.e, 5)
w = e, (6)
20 = M€, %)

To complete the variable set for computing the potentials and the stream function, the azimuthal angle ¢ is introduced as

¢ = atan(z/yk). (3)

2.2 Velocity potential

In the frame of potential field theory, the flow velocity U is obtained from the velocity potential (scalar potential) ®(v*) as
U=-vot) = v x (Te,). )

The symbol e is the unit vector in the azimuthal directions around the symmetry axis (Sun-to-planet direction). Kobel and
Fliickiger (1994) and Guicking et al. (2012) obtained the analytic expression of the velocity potential ®(v*) using the shell
variable v (iso-contour lines enveloping the magnetosphere) and the connector variable v (iso-contour lines connecting from

the bow shock to the magnetopause).

v2 _v2. 2 _ .2
‘I)(vel) = U, 2mp b2s (U 21} i ]n’U> B
Ubs ~ Ump 2vbs

1 ve
3 Us (7 —0%) + 20, (10)

where U, is the upstream flow velocity, vy, the shell variable at the magnetopause, vy, the shell variable at the bow shock, v
the shell variable, u the connector variable, and @ével) a free parameter (integration constant) which is set to zero without loss
of generality. The boundary shell values vy, and vy, contain the information on the stand-off distances (R, and Ry,) in the

subsolar region, and are defined by Kobel and Fliickiger (1994) as

Ump = / Fmp (11
Vps = \/2Rbs_Rmp~ (12)
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2.3 Stream function

Guicking et al. (2012) transformed the KF potential and obtained analytically the stream function ¥ as a function of the shell

variable and the connector variable:

1 V2 VR 2 1

o= U e ) <”2—1) S (13)
2 bs — Ump | U \ Vi 2

Hereafter, one may set U, = —1 so that the velocity potential ®(**) is normalized to the upstream velocity. Isocontour lines

of the stream function represent the streamline.

2.4 Magnetic scalar potential

The magnetic field in the magnetosheath is derived from the scalar potential in the same fashion as the flow velocity, that is,
B — _ypme) (14)

The magnetic potential is a function of the shell variable v and the connector u (Kobel and Fliickiger, 1994):

’U2 2

(b(mag) _ mp Ubs >
V2 — 2
bs mp

u u : 1 v
(BZS P)cos¢ + B p)s11r1<;§)u ( + 2) +

v ’Ubs
2 .2
B:gup) (U 21} +1nv)
2Ubs

—BEP) (—g) — By — B, 4 ) 1)

where BéuP) is the sunward component of the upstream magnetic field (corresponding to the GSE-X in near-Earth space), and
B?Sup) and B S‘p) are two components of the upstream magnetic field perpendicular to the x direction. ¢ is the azimuthal angle
of the position around the symmetry axis (the y direction is given by the angle ¢ = 0). The integration constant is chosen as
@émag) = 0. The magnetic potential cannot be further transformed into the form of stream function since the magnetic field

distribution is essentially three-dimensional in the magnetosheath.
3 Mapping method comparison

3.1 Mapping problem

Our task is to find the shell variable v and the connector « in the empirical magnetosheath by finding a suitable mapping of
the position vector from the empirical magnetosheath (denoted by ) onto the KF parabolic system (denoted by 7). The
evaluated v and u are then readily used to obtain the scalar potentials and the stream function. The flow velocity and the

magnetic field in the empirical magnetosheath are obtained by computing the gradient of the respective potential.
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A practically useful mapping procedure to utilize the KF potential is proposed by Soucek and Escoubet (2012) by using
the radial direction as a reference. While the radial mapping can reasonably (i.e., with a relatively high accuracy) transform
the KF potential into the empirical magnetosheath domain on the dayside, the mapping quality becomes degraded in the flank
region due to the conversion effect associated with the non-orthogonal grid construction. Our approach makes a difference to
the radial mapping in using the magnetopause-normal direction as a reference. The azimuthal coordinate ¢ is still orthogonal

to the u and v coordinates. We briefly compare between the two mapping methods here.
3.2 Radial direction as reference

Soucek and Escoubet (2012) presented in their pioneering work an algorithm of radial mapping by transforming the KF
magnetosheath model into a general, empirical magnetosheath shape by referring to the radial direction from the planet and
scaling the radial position in the magnetosheath to the KF model. While the radial mapping can reasonably (i.e., with a
relatively high accuracy) transform the KF potential into the empirical magnetosheath domain on the dayside, the mapping
quality becomes degraded in the flank region due to the strongly non-orthogonal grids. Figure 1 displays a comparison of the
radial grids between the KF magnetosheath model and the empirical magnetosheath model. The grids span the radial direction
to the planet and transfinite interpolation between the bow shock and the magnetopause. The radial mapping has a drawback
in a stronger grid non-orthogonality effect, which causes an artificial converging flow pattern in the flank region (velocity
potential shown in Fig. 2 when the scalar potential is directly transformed. In the Soucek-Escoubet method, the problem of
flow conversion effect was avoided by solving the MHD Rankine-Hugoniot relation and tracking the streamline iteratively

between the KF parabolic magnetosheath model and the empirical magnetosheath model.

Parabolic boundaries Non—parabolic boundaries
-20} { -20}
E o0 0
>
20¢ 1 20
20 0 -20 20 0 -20

X [Re] X [Re]

Figure 1. Grid pattern generated by the radial mapping for the Kobel-Fliickiger parabolic magnetosheath (left panel) and the non-parabolic,

empirical magnetosheath (right panel).

3.3 Magnetopause-normal direction as reference

Our mapping method makes a difference from the radial mapping method in that the magnetopause-normal direction is used as
a reference to the magnetopause. Our method guarantees the grid orthogonality around the magnetopause both on the dayside

and in the flank region. The magnetopause-normal grids are shown in Fig. 3 for the KF magnetosheath model (with parabolic
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Figure 2. Velocity potential in the Kobel-Fliickiger model (left panel) and its radial mapping onto the non-parabolic empirical boundaries

(right panel).

boundaries) and the empirical magnetosheath model (with non-parabolic boundaries). Even though the exact conformal map-
ping is not available, the magnetopause-normal mapping method retains the grid orthogonality around the magnetopause. This
feature (orthogonality around the magnetopause) plays a crucial role in mapping the scalar potentials. An example of the

scalar-potential mapping by referring to the magnetopause-normal direction (our final results) are shown in section 4.8.

Parabolic boundaries Non—parabolic boundaries
-201
E o0
-
20
20 0 -20

X [Re)

Figure 3. Mesh pattern used in the magnetopause-normal mapping in this work for the parabolic boundaries (left panel) and the non-

parabolic, empirical boundaries (right panel).

4 Magnetopause-normal mapping

4.1 Overview of the procedure

The magnetopause-normal mapping is performed with two transformations. In the first transformation, the position vector is
mapped from the empirical magnetosheath r onto the KF magnetosheath model r. This is achieved on the assumption that
the distance to the magnetopause along the magnetopause-normal direction is the same when normalized to the magnetosheath

thickness (defined as the distance from the magnetopause to the bow shock along the magnetopause-normal direction). The
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azimuthal angle ¢ is the same between the empirical magnetosheath and the KF model. The first transformation is divided into
computing the distance to the magnetopause (step 1), the thickness of the empirical magnetosheath (step 2), the thickness of
the KF magnetosheath (step 3), and the mapping of the position vector onto the KF model(step 4).

In the second transformation, the mapped position vector is used to compute the shell variable v and the connector variable
u (step 5) and to obtain the potentials and the stream function in the empirical magnetosheath using Egs. (10), (13), and (15)
(step 6). Here again, the azimuthal angle ¢ is treated as the same.

Figure 4 illustrates the mapping procedure and graphically explains the variables that need to be determined to perform
the mapping such as the zenith angle of the nearest magnetopause 0y, the distance from the planet to the bow shock 7,
the distance from the planet to the magnetopause 7, the relative distance to the magnetopause e p, and the magnetosheath
thickness aé‘;ff). The position vector r, the bow shock stand-off distance R}, the bow shock shape, the magnetopause stand-off

distance R, and the magnetopause shape are assumed to be known in our mapping.

bow shock

upstream
flow

magnetopause

Figure 4. Variables used in the magnetopause-normal mapping with the zenith angle of the nearest magnetopause 6., the radial distance to

the bow shock and magnetopause along the magnetosheath-normal direction (s and r,p, respectively), the distance from the magnetosheath
to the magnetopause cvemp, the magnetopause thickness aéﬁf%. The position vector is denoted by 7. The bow shock and magnetopause stand-

off distances are denoted by Ry, and Ry, ), respectively.

4.2 Setup

We begin with a position vector in the empirical magnetosheath domain, and express the position vector as r = re, +ye,+ze..
Hereafter, we present the mapping procedure in the two-dimensional plane spanning the x and y directions for simplicity, but the
computation in three dimensions is straightforward by representing the y component of position vector in the cylindrical fashion
as pcos ¢ and the z component into psin ¢ using the distance p to the x axis. The boundaries (bow shock and magnetopause)
are specified by the users and do not need to be parabolic. In this paper, we use the following bow shock and magnetopause

models.
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The empirical bow shock position expressed in GSE (Geocentric Solar Ecliptic) coordinates proposed and discussed by
Farris et al. (1991); Cairns et al. (1995)

£ = Rbs— bomp¥? (16)

where Ry, is the bow shock stand-off distance and bemy, is the empirical flaring parameter. We note here that the original
Farris empirical bow shock model is not a paraboloid model, it is an ellipsoid model (with an eccentricity of 0.81),
describing the bow shock on the dayside. It is not a proper representation of the far flank bow shock. Also, the Cairns
paraboloid bow shock model does not properly represent the far flank bow shock. The distant bow shock shape ap-

proaches that of a hyperboloid.

The empirical magnetopause position by Shue et al. (1997):

ARY,

2 2
_ _ 17
R A e 0, (17)

in the Cartesian representation and

/2
o = Rt | ————. 18
"mp = Fmp 1+ cost (18

in the polar representation.

We use a specific exponent for the Shue model (with an alpha exponent of 0.5) in an effort to show that the analytic model
is ‘simple’. The solar wind conditions for which this exponent is applicable is not often encountered (e.g., interplanetary

magnetic field has the Bz component larger than +8 nT, with specific values of solar wind dynamic pressure).

In our setup, the radial distance from the planet to the bow shock is expressed as (see appendix)

Tbs

1
= — | - 50 +
29( COS

2bemp Sin

Vi- (1—4bemprs)sin29>. (19)

The radial distance to the magnetopause is given conveniently by Eq. (18). The Shue model reproduces the magnetopause

stand-off distance R, in the subsolar direction (¢ = 0), and the cylindrical distance asymptotes to 2Ry, in the tail. It is worth

noting here that one needs to compute the radial distance from the planet to the bow shock or magnetopause as a function of

the zenith angle when using different shapes.

4.3 Step 1: Measuring the distance to magnetopause

In the first step, the distance from the given position in the magnetosheath to the nearest magnetopause is computed (see Fig.

5). We express the position vector along the magnetopause-normal direction such as

T

Tmp + Cemp €mp, (20)
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where 7, is the magnetopause position nearest to the position vector, and ey, is the unit vector in the magnetopause-normal

direction. The unit vector points away from the planet and satisfies the condition
Tmp - €mp > 0 2D

The symbol ey, is the distance to the magnetopause along the magnetopause-normal direction e, in the empirical magne-
tosheath.
The nearest magnetopause position is obtained by searching for the zenith angle 6,,,, for the minimum distance from the

sample position to the magnetopause. The distance D is defined as

D= \/ (2 — Trp €08 Omp) 2 + (7 — Tamp S0 O ) 2. o)

The search for the minimum distance is implemented in a brute-force fashion as a function of (i, = cos 6, in our study.

empirical
bow shock

empirical
magnetopause

R, R

S mp
Figure 5. Measuring the distance to the empirical magnetopause (Step 1).

Having the nearest magnetopause at a distance of ry,;, and a zenith angle of 6.,,,, we are ready to compute the magnetopause-
normal direction and the distance ter,p. To obtain the magnetopause-normal direction, we define the magnetopause shape

function fp,, as

4R}

= 2 2 —mp 23
Jmp *+y IRE, (23)
and compute the normal direction by the gradient of f,; as
afmp
—_— = 2 24

o x (24)
O fm AR;,

fonp = 21— 27?22 ) 25)

ay (4Rmp -y )

The magnetopause-normal direction is obtained by normalizing the gradient vector (O fmp, Oy fmp) and representing with the
basis vectors (e, and e,) as
sgn o
V(0x fup)? + (Oy finp)?
(amfmp €x + ayfmp ey) (26)

€mp
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evaluated at the magnetopause (z = ryp c0s Omp and y = 7wy, sin Oy, ). The magnetopause-normal vector ey, has a unit length,
and the sign (sgn = +£1) is chosen such that the normal vector is pointing outward (Eq. 21). The distance e, to the magne-
topause along the normal direction is obtained from Eq. (20) as

(x — Tmp €08 Omp ) + (Y — Trmp Si0L Oy
€mp €zt Eemp - €y

@7

Qemp =

Equation (27) is constructed to be robust against the singular behavior on the dayside (e,,-e, = 0) and in distant tail (e, €; =

0).
4.4 Step 2: Computing the thickness of empirical magnetosheath

In the second step, the magnetosheath thickness is computed using the position vector and the magnetopause normal direction

(Fig. 6). For our mapping purpose, the distance e, p, is normalized to the magnetosheath thickness aé‘fﬁg such that the relative

distance cemp/ aéﬁf& serves as an invariant of the mapping from the empirical magnetosheath onto the KF magnetosheath.

To achieve this, we combine Eq. (16) with Eq. (20), and analytically determine the thickness from the bow shock to the

magnetopause in the empirical magnetosheath. That is, the thickness ozgﬁrf% is obtained by rewriting the bow shock quadratic

equation (Eq. 16) for the position vector using the variable aé‘;f,l (Eq. 20) extended to the bow shock location. The equation is

again quadratic, and the solution is algebraically obtained as:

1
(bs) -
Aemp 2bomp e?np,y X
[_(emp,w + 2bemp ympemp,y)2 + da] ) (28)

where d,, is an auxiliary variable defined as

da = [(emp7z + 2bemp Ymp emp7y)2 -
4bemp efnp’y X

(xmp + bcmp yr2np - Rbs)}l/? 29)
In the subsolar direction (ymp = 0), the thickness is simplify given as
agﬁg - Rbs - Rmp~ (30)

Equations (28) becomes singular in the subsolar direction and Eq. (30) needs to be set separately to avoid the numerical

digergence problem.
4.5 Step 3: Computing the magnetosheath thickness in the KF system

In the third step, the magnetosheath thickness is computed in the KF model (Fig. 7). We repeat the procedures of steps 1 and 2
for the KF system and determine the KF magnetosheath thickness as reference. We treat the zenith angle 6,,,,, and the relative

distance ctemp/ aé‘fﬁg as invariants of the mapping between the empirical magnetosheath and the KF system. The KF bow shock

10
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Figure 6. Computing the magnetosheath thickness in the empirical model (Step 2).
location is given as

T = Rps — biy?, (31)

where the KF bow-shock flaring parameter by is pre-fixed as (Kobel and Fliickiger, 1994)

1
by = ——""7-—+-. 32
T 4Ris — 2Ry (32)
The radial distance from the planet to the KF bow shock is
1
TS:) = 9, X
2by sin” 0
(—cos6‘ + \/1 + (4by Rps — 1) sin? 9) ) (33)
The KF magnetopause is defined in Kobel and Fliickiger (1994) as
_R L (34)
T = Rmp — 5 Rmpy .

From Eq. (34) the radial distance from the planet to the KF magnetopause is computed as
R X

) = Sy (_ cos+ /1 + sin? 9) . (35)
S11

To obtain the magnetopause-normal direction in the KF system, we compute the gradient of the magnetopause shape function:

1
k) 2
F¥) =2 — Rup + ﬁy : (36)

The gradient is analytically given as

AL
ox
AL y

= 38
ay Rons (38)

= 1 (37)
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The magnetopause-normal direction egfl)) is then obtained by applying Eqs. (37) and (38) to Eq. (26), which reads as

o sgn o
mp -
V(@182 + (0, 1492
(018 ex+ 0,78 ey) (39

KF bow shock

KF magnetopause

Rbs Rmp

Figure 7. Computing the magnetosheath thickness in the KF model (Step 3). The same zenith angle as that in step 2 is used.

The thickness in the KF system af{bs) is determined by combining the bow shock shape (Eq. 31) with the position vector at
the bow shock:

ri) =7+ ell). (40)
Equation (31) becomes again a quadratic equation with respect to the thickness algbs), and the solution reads:
(bs) 1
Kk = 552 X
2by e?np,y
[~ (emp,a + 2Dk Ymp €mp,y) + dgtk)] (41)

where the auxiliary variable d%¥ is defined as

A9 = (empe + 2ty eopy)?

—4by €2, (Tmp + by, — Rus)]/2. (42)
4.6 Step 4: Mapping the position vector onto the KF system

In the fourth step, the mapping of the position vector is performed from the empirical magnetosheath onto the KF system
(Fig. 8). Assumption is made such that the relative distance to the magnetopause along the magnetopause-normal direction
is the same between the two systems. The distance from the magnetosheath position vector to the magnetopause along the

magnetopause-normal direction in the KF system « is then determined by the relative distance in the empirical magnetosheath

Qemp, the thickness of the empirical magnetosheath a‘gfnp, and magnetosheath thickness in the KF system al((bs) as
b
e = temp 0 /a3 43)

12



The mapped position vector is then computed as
270 r® = rgfl)) + o eﬁl‘%, (44)

using the nearest magnetopause position rf,lff) (Eq. 35), the magnetosheath-to-magnetopause distance ay (Eq. 43), and the

magnetopause-normal direction egfr)) (Eq. 39).

KF bow shock

KF magnetopause

Ry R

S mp

Figure 8. Mapping the position vector onto the KF magnetosheath model (Step 4).

4.7 Step 5: Evaluating the shell and connector variables

In the fifth step, the shell variable v and the connector variable u are computed from the mapped position vector ) using
275 Egs. (1) and (2). respectively. The variables v and u are the same as the parabolic coordinates used in the KF potential with a
focus at £ = Ry,p/2. In our algorithm, the focus is explicitly given in Egs. (1), (2), and (3). The azimuthal angle around the

symmetry axis ¢ is treated in the same way as in the KF model.

KF bow shock
u-contour

v-contour

KF magnetopause

Ry, R

S mp
Figure 9. Evaluating the shell variable v and the connector variable u in the KF magnetosheath model (Step 5).

Figure 10 compares the iso-contours of the shell v and the connector u represented in the KF system (left panel) and the
empirical magnetosheath (right panel) for a bow shock stand-off distance of 12.8 Ry (Génot et al., 2011), a bow shock flaring
280 of 0.0223 Ry 1, (Farris et al., 1991; Cairns et al., 1995), and a magnetopause stand-off distance 9.8 Rg (Génot et al., 2011).
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Figure 10. Iso-contour lines with u© = const. (center of curvature on the left side) and that with v = const. (center of curvature on the right
side) in the KF magnetosheath model (left panel) and the empirical magnetosheath model (right panel). The bow shock stand-off distance is

12.8 Earth radii and the magnetopause stand-off distance is 9.8 Earth radii.

The shell variable v is characterized by the lines with the curvature center on the right side in the panel, and contains the
parabolic bow shock (at v = v1,¢) and magnetopause (at v = v,p) marked by thick lines. The connector variable u has the
curvature center on the left side in the panel, and the iso-contour lines are orthogonal to the bow shock and magnetopause. The
computation of the v and v variables and their gradient and curl is performed in the Cartesian so that the connection represented
by the Christoffel symbol vanish in the computation. Computation in the Cartesian domain is also beneficial to the practical

application because spacecraft trajectories are often represented in the Cartesian coordinates.
4.8 Step 6: Computing the potentials and stream function

The scalar potentials (velocity potential and magnetic potential) and the stream function are obtained from the shell v and the
connector u using Eqgs. (10), (13), and (15). The velocity potential (normalized to the upstream flow) is displayed in Fig. 11
left panel, and the stream function in right panel. The iso-contours of the velocity potential represent the lines of the same
flow velocity. The iso-contours of the stream function represent the streamlines in the magnetosheath. The flow is deflected
around the nose of the magnetopause (the subsolar point) and the streamlines are tangential to the magnetopause. Due to the
grid orthogonality around the magnetopause, the streamlines are constructed as tangential to the magnetopause shape, which
qualifies the magnetopause-normal mapping method as a useful tool for the magnetosheath model.

The magnetic potential and the derived magnetic field are displayed in Fig. 12. The magnetic potential and the magnetic field
(the gradient of the potential multiplied by the minus sign) depend on the upstream field. Fig. 12 shows an example with an
upstream field angle of 135 degree to the x axis (i.e., 45 degree to the upstream flow direction). The magnetic field is computed
using the central difference scheme. Near the boundaries (bow shock or magnetopause), the mesh resolution is enhanced so
that the mesh points do not cross the boundary when computing with the central difference scheme. The upstream field is
deflected on the positive y side (right panel, lower half plane), and is draping the magnetopause on the negative y side (right

panel, upper half plane).
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Figure 11. Velocity potential (left panel) and stream function (right panel) in the empirical magnetosheath domain obtained by mapping onto

the shell variable v and the connector variable w.
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Figure 12. Magnetic potential for the upstream magnetic field with an angle of 135 degree to the x axis (45 degree to the upstream flow

direction, (left panel) and sampled magnetic field vectors obtained by the negative gradient of the magnetic potential (right panel).

5 Concluding remark

Our potential mapping method may be regarded as an updated version of the radial mapping method (Soucek and Escoubet,
2012) by retaining the orthogonality near the magnetopause in the flank to tail region and also by computing the field through
305 the potential mapping. Velocity potential, stream function, and magnetic potential are evaluated in the empirical magnetosheath.

The advantages of our methods are as follows.

1. The method makes extensive use of the exact solution of the Laplace equation (the Kobel-Fliickiger potential and the
Guicking stream function). The plasma flow and magnetic field can be determined semi-analytically in a wide range of

zenith angle in the magnetosheath when the solar wind conditions and the boundary shapes are given.

310 2. The method is applicable to a non-parabolic shape of magnetosheath domain, opening the door to develop a tool to assist

numerical simulations and spacecraft observations of not only the Earth but also the planetary magnetosheath domain.

3. The method is computationally inexpensive. In particular, if the shape of bow shock and magnetopause is analytically

given, most of the computational steps in the potential mapping method have an analytic expression.
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As stated in section 1, one ideally needs to find a conformal mapping from the KF magnetosheath model onto the empirical
magnetosheath. While the conformal mapping is known both for the empirical bow shock and the empirical magnetopause, the
conformal mapping of the entire magnetosheath domain still remains a challenge. There are two problems on this. First, the
closing boundary (the u-contours) connecting between the bow shock and the magnetopause is not known, and moreover, the
uniqueness of finding such a boundary is not guaranteed. Second, the gradients along u are not the same between the empirical
bow shock and the empirical magnetopause such that a naive transfinite interpolation ends up with highly non-orthogonal grids
in the magnetosheath.

Our method of computing the plasma flow and magnetic field should be compared against the observations and simulations.
For example, THEMIS and ARTEMIS spacecraft (Angelopoulos, 2008) and MMS spacecraft (Burch et al., 2016) are providing
a huge amount of data on both sides of the bow shock in the equatorial plane; Cluster spacecraft Escoubet et al. (2001) are
collecting data in polar orbit; ACE spacecraft data Stone et al. (1998) may be used as an upstream monitor; and Earth flyby
data of planetary missions (such as Cassini, BepiColombo) cover the far-distance tail region. In reality, non-axisymmetric
structure arises in the magnetosheath. Our method has the possibility to be extended to three-dimensional, non-axisymmetric
modeling by the use of magnetopause normal mapping. It is possible to obtain the steady-state magnetosheath potential in a
more general sense without referring to the KF94 solution. For example, for a non-axisymmetric geometry of magnetosheath
(e.g., Dimmock and Nykyri, 2013), one may numerically solve the Laplace equation for a given set of boundary shapes (bow
shock and magnetopause). Various numerical solvers are known for solving the Laplace equation such as the Jacobi method,
the Gauss-Seidel method, and the successive over-relaxation (SOR) method. These Laplace solvers are numerically more
expensive than the mapping method, but the computation in 3-D is feasible with the contemporary computational resources.
Or one may expand the magnetosheath magnetic field in different orthogonal functions. The KF solution makes use of the
Bessel functions (Kobel and Fliickiger, 1994). For flexible magnetopause and bow shock boundary models, a magnetosheath
magnetic field model is constructed by making use of Legendre polynomials (Romashets and Vandas, 2019). There is no
restriction regarding the choice of the magnetopause model. The magnetopause-normal direction needs to be computed either
analytically using the gradient of the magnetopause function as V fy,,, or numerically for a user-defined magnetopause shape.

Additional references to analytic models of the magnetosheath magnetic field (using expansions in Legendre polynomials)

that make use of flexible magnetopause and bow shock boundary models (e.g., Romashets and Vandas, JGR, [2019])

Appendix: Planet-to-bow shock distance

By introducing the zenith angle 6 and inserting = s cos and y = rpssiné in Eq. 16), we obtain the equation for the radial

distance to the empirical bow shock:
bemp 7'12)5 sin 0 + Ths c0s8 — Rps = 0. (45)

Equation (45) can be algebraically solved, and we take the positive value of the solution as presented in Eq. (19).
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