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Abstract. An axi-symmetric two-dimensional magnetopause model is constructed by making use of the conformal mapping

in the complex plane. The model is an analytic continuation of the power-law-damped (or asymptotically elongated) parabolic

shape. The complex-plane expression of the magnetopause opens the door to properly map the magnetopause and magne-

tosheath coordinates from one model to another.

1 Introduction5

The magnetopause model proposed by Shue et al. (1997) (hereafter the Shue model) is, to the authors’ knowledge, one of the

most successful structure models in space science. The Shue model can be given in a simple analytic way by combining a

parabolic shape with a power law, and has successfully been tested against the magnetopause of the Earth and the other planets

such as Mercury (Winslow et al., 2013).

Here we report our finding that the magnetopause model can be formulated as a conformal mapping in the complex plane.10

This mapping preserves local angles. Any analytic function satisfies the conformal (angle-preserving) character in the complex

plane as long as there is non-zero derivative. Expression of the magnetopause as a conformal map is ideal when dealing with

different magnetopause models.

Our study is motivated to fill the gap between the property of the bow shock models and that of the magnetopause models.

The bow shock is often modeled as a conic section (either as a parabola or as a hyperbola, see Cairns et al., 1995) and the15

analytic expression for the conformal map is known (Darboux, 1887; Sauer and Szabó, 1967; European Math. Soc., 2020).

The magnetopause shape (such as in the Shue model) is, on the other hand, not a conic section, and the existence of conformal

mapping remained a question for a long time. We tackle the question by incorporating various conformal mappings.

2 Construction of conformal map

We start with the magnetopause model in polar coordinates after Shue et al. (1997),20

R=Rmp

(
2

1+ cosθ

)α

, (1)

where R is the radial distance to the planet, θ is the zenith angle (measured from the planet center), and α is the power index to

designate the magnetopause shape in the tail region, e.g., a parabolic shape (corresponds to α= 1), an elongated shape (given
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by α= 1/2), or damped, converging shape (α < 1/2). Rmp denotes the magnetopause stand-off distance at the subsolar point.

In our work, we choose α= 0.5 which is statistically representative (Shue et al., 1997).25

By introducing the transformation

x =
R

Rmp
cosθ (2)

y =
R

Rmp
sinθ, (3)

the magnetopause location is given in the Cartesian form as

x2 =
4

4− y2
− y2. (4)30

The derivation of Eq. (4) is shown in Appendix. Note that x and y are normalized to the magnetopause stand-off distance Rmp

for simplicity. The magnetopause model (Eq. 4) has the following boundary conditions and asymptotic behavior:

1. The stand-off distance is restored at the subsolar point, i.e., x= 1 at y = 0.

2. The distance to the planet is y =±
√
2 at the terminator (x= 0)).

3. The distance to the Sun-Earth axis (or the x-axis in GSE coordinates) is y =±2 when x→∞.35

Now we express Eq. (4) in the complex plane using the variable z = u+ iv so that the magnetopause location is given as

f(z) = x+ iy, (5)

in other words,

x = Re(f(z)) (6)

y = Im(f(z)) (7)40

in the Cartesian representation. The complex-valued function f(z) is an extension of the magnetopause location. The magne-

topause is restored when choosing v = vmp = 1 (or vmp to be evaluated as
√
Rmp when not normalized). The task is thus to

find the suitable function f(z).

To our task, we first transform the y coordinates onto the imaginary axis as iy (where i is the imaginary unit) so that the

denominator in Eq. (4) is formulated from 4/(4−y2) into 4/(4+(iy)2). Now we perform the analytic continuation of the right45

hand side of Eq. (4) and replace iy by z.

We find out that the combination of four sequential conformal mappings is a reasonable analytic continuation of the mag-

netopause model: (t1) square transformation, (t2) Joukowsky transformation (with shift), (t3) square root transformation, and

(t4) scaling and shifting (for the matching with the boundaries). Each transformation is discussed below.

(1) Square transformation50

In the first conformal mapping, the square transformation is used with a unit coefficient and no shift. The transformation is

expressed as

t1 : z → z2. (8)
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The transformation yields the parabolic coordinates as

Re(z2) = u2 − v2 (9)55

Im(z2) = 2uv, (10)

which can be arranged into a parabolic equation when eliminating u as

Re(z2) =

(
Im(z2)

)2
4v2

− v2. (11)

In fact, the parabolic model of magnetopause is introduced by Kobel and Flückiger (1994), which is equivalent to the following

transformation60

tK : z →−1

2
z2 +

1

2
. (12)

Here v = vmp corresponds to the magnetopause location. Figure 1 top left panel displays the mapping of u= const lines (in

gray) v = const lines (in black) for the transformation t1. The “nose” of magnetopause is located on the negative x side.

Figure 1. Constant u lines (in gray) and constant v lines (in black) for the conformal mappings t1, t2, t3, and t4.

(2) Shifted Joukowsky transformation

In the second conformal mapping, the parabolic shape of the mapped curves are stretched using the poles at z =±i2. The65

transformation is a variant of Joukowsky transformation, which deforms circles into ellipses (Joukowsky, 1910). We perform

the Joukowsky transformation by retaining the pole terms z2 +4 as

t2 : z2 → (z2 +4)+
4

z2 +4
. (13)
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Figure 1 top right panel displays the mapping for the transformation t2. The overall structure of v = const lines still retains the

parabolic shape, but the focal point shifts to a larger value of x and the distance from the x axis (the y = 0 line) is larger.70

(3) Shifted square root transformation

In the third conformal mapping, the Joukoswky-transformed function t3 is compared to the magnetopause model (Eq. 4). The

comparison yields a subtraction by 4 and a square-root operation as

t3 : (z2 +4)+
4

z2 +4

→
[
(z2 +4)+

4

z2 +4
− 4

]1/2
. (14)75

Again, the poles are retained in this transformation. The mapped function has a shape of magnetopause, but the focal point

is located in the far tail region and the distance to the magnetopause is smaller than the stand-off distance. Figure 1 bottom

left panel displays the mapping for the transformation t3. The tail shape is elongated by this transformation The focal point is

moved close to the origin.

(4) Scaling and shifting80

In the final conformal mapping, the mapping is scaled by a factor a and also shifted by an offset of f0. The transformation

reads

t4 :

[
z2 +

4

z2 +4

]1/2
→ a

[
z2 +

4

z2 +4

]1/2
+ f0 (15)

where the scale factor a=−2 is determined by the asymptotic behavior in the tail (distance of 2Rmp to the axis) and the shift85

f0 = 1+2/
√
3 is determined by the stand-off distance at the subsolar point. Combining the four transformations, the scalable

magnetopause shape is expressed as a conformal mapping with

f(z) = −2

[
4

z2 +4
+ z2

]1/2
+

(
1+

2√
3

)
. (16)

Figure 1 bottom right panel displays the mapping for the transformation t4. The magnetopause nose is flipped to the positive x

side. and is scaled to match the magnetopause asymptotic behavior in the tail, and the lines are shifted by f0 along the x axis90

to meet the stand-off distance.
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Magnetopause location

The magnetopause location is restored when choosing v = 1 in z = u+iv. It is also worth noting that the function obtained by

the transformation t3 for v = 1 can analytically be evaluated as

4

z2 +4
+ z2 =

[
4(u2 +3)

(u2 +3)2 +(2u)2
+(u2 − 1)

]
+95

i2u

[
1− 4

(u2 +3)2 +(2u)2

]
, (17)

which is used to determine the scale factor a and the shift f0 in the transformation t4 by comparing with the square of f(z) as

(f − f0)
2 = a2

(
4

z2 +4
+ z2

)
. (18)

3 Applications and limits

3.1 Accuracy check100

The function f(z) = x+ iy using Eq. (16) at v = 1 overall reproduces the shape of the Shue model. Figure 2 shows the

comparison between the magnetopause model using Eq. (16) and the Shue model. The subsolar point (x= 1 at y = 0) and the

asymptotic behavior (y →±2 at x→−∞) are reproduced, as well. However, it should be noted that the difference occurs from

the Shue model at the terminator (x= 0). Our function shows the magnetopause distance at the terminator at y =±1.3504,

which is slightly underestimating that of the Shue model, y =±
√
2 =±1.4142. The difference between the two models is105

about 4.7 %. This mismatch indicates that the analytic continuation is not exact but is of approximate nature. Thus, care should

be exercised when working on the magnetopause around the terminator with our conformal mapping.

Figure 2. Magnetopause location generated by Equation (16) with v = 1 in z = u+iv (in black) and the magnetopause model by Shue et al.

(1997) (dotted gray). X and Y coordinates are normalized to the magnetopause stand-off distance Rmp.
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3.2 Curvilinear grid generation

The analytic nature of our function (Eq. 16) can be used for the curvilinear grid generation around the magnetopause for

various numerical studies. Figure 3 displays the curvilinear grid generated by Eq. 16) for values of u= {0.5,0.7, · · · ,1.4} (the110

C-shaped curves) and v = {0.0,±0.2, · · · ,±1.4} (radial to the planet or perpendicular to the X axis). The curves of constant

u values are orthogonal to that of constant v values. This property comes from the fact that Eq. ( 16) is an analytic function

which is one of the solutions of the Laplace equation. In other words, Eq. ( 16) solves the Laplace equation for the given

magnetopause position (imposed by v = 1).

Figure 3. Curvilinear grids generated by the conformal map (Eq. 16) around the magnetopause (v = 1). The C-shaped curves represent

lines of constant v values. The innermost curve corresponds to a line of v = 0.5. The v value for the curves are shifted as 0.5, 0.7, · · · , 1.4

(10 curves are shown). The radial curves represent constant u values and the curves are orthogonal to the curves of v values. The subsolar

direction Y = 0 is given by u= 0. The curves are plotted for u values of 0, 0.2, 0.4, · · · , 4.4 (45 curves are shown).

3.3 Variation of tail shape115

Qualitatively speaking, different tail shapes can also be obtained by generalizing the square-root operation in t3 into a power

with the index α as

t′3 : (z2 +4)+
4

z2 +4

→
[
(z2 +4)+

4

z2 +4
− 4

]α
. (19)

The magnetopause coordinates are plotted as grids for α of 0.2, 0.4, 0.6, and 0.8 in Fig. 4 by using the scale factor and the120

shift in t4. A converged tail shape is obtained for α < 0.5 and a divergent tail shape for α > 0.5, which is in agreement with

the Shue model (Eq. 1).
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Figure 4. Magnetopause grids generated for different values of the power index α in t′3 transformation. Values of u are 0.6 (innermost

C-shaped curve), 0.8, · · · , 1.4 (outermost curve).

4 Summary and outlook

Conformal mapping is a useful method in the model construction when the axi-symmetry holds and the boundary is modeled

in the two-dimensional spatial domain. Our magnetopause model completes the scenario that both dayside boundaries (bow125

shock and magnetopause) can be modeled by conformal mapping, which opens the door to analytically or semi-analytically

map the magnetosheath scalar potential by Kobel and Flückiger (1994) and the set of velocity potential and stream function by

Guicking et al. (2012) onto a more realistic magnetosheath domain (cf. Soucek and Escoubet, 2012).

The easiest approach of magnetosheath coordinate mapping would be to introduce the transfinite interpolation in the complex

plane. Or one could numerically solve the Laplace equation for the given boundaries in order to generate strictly orthogonal130

curvilinear coordinates.

Appendix: Magnetopause location in Cartesian

In the case of α= 0.5 the magnetopause position in the Shue model is given by

R=Rmp

√
ℓ

1+ cosθ
, (20)

where ℓ= 2. Equation (20) is transformed sing the conversion rule in Eqs. (2) and (3) into the following normalized form:135

r =

√
ℓ

1+ x
r

, (21)
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where r =R/Rmp. After squaring and exchanging r with 1+x/r, Eq. (21) is expressed as

1+
x

r
=

ℓ

x2 + y2
. (22)

We compute square of x/r in Eq. (22) and obtain

x2

x2 + y2
=

(
ℓ

x2 + y2
− 1

)2

, (23)140

which can be arranged into a fourth-order algebraic equation with respect to y as

y4 +x2y2 − 2ℓy2 − 2ℓx2 + ℓ2 = 0. (24)

The factorized form of Eq. (24) reads

(x2 + y2)(y2 − 2ℓ)+ ℓ2 = 0 (25)

Equation (25) delivers the Cartesian representation of the Shue model in a convenient form (Eq. 4).145
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