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Abstract. During minor to moderate geomagnetic storms, caused by corotating interaction regions at the leading edge of
high-speed streams, solar wind Alfvén waves modulated the magnetic reconnection at the dayside magnetopause. The
Resolute Bay Incoherent Scatter Radars (RISR-C and RISR-N), measuring plasma parameters in the cusp and polar cap,
observed ionospheric signatures of flux transfer events that resulted in the formation of polar cap patches. The patches were
observed as they moved over the RISR, and the Canadian High-Arctic lonospheric Network (CHAIN) ionosondes and GPS
receivers. The coupling process modulated the ionospheric convection and the intensity of ionospheric currents, including
the auroral electrojets. The horizontal equivalent ionospheric currents are estimated from ground-based magnetometer data
using an inversion technique. Pulses of ionospheric currents that are a source of Joule heating in the lower thermosphere
launched atmospheric gravity waves, causing traveling ionospheric disturbances (T1Ds) that propagated equatorward. TIDs
were observed in the SuperDual Auroral Radar Network (SuperDARN) HF radar ground scatter and the detrended total

electron content measured by globally distributed Global Navigation Satellite System (GNSS) receivers.

1 Introduction

Solar wind coupling to the dayside magnetosphere (Dungey, 1961, 1995) generates variable electric fields that map to the
cusp ionosphere, driving the ionospheric convection and currents. The magnetic reconnection on the dayside magnetopause

that leads to open magnetic flux carried over the polar cap to the magnetotail. Dayside reconnection events..-which-was
i are oftenis rew-thought to be either continuous (quasi-
steady) or pulsed (impulsive) (Russell and Elphic, 1978, 1979; {Provan et al., 1998;-and-references-therein). The transient
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nature of magnetic reconnection at the dayside magnetopause is exemplified by flux transfer events (FTEs) (Russel and
Elphic, 1978) and their ionospheric signatures have been extensively studied (Van Eyken et al., 1984; Goertz et al., 1985;
Southwood, 1987; Pinnock et al., 1995; Rodger et al., 1997; Provan et al. 1998, and references therein). Provan et al. (1998)
observed a series of quasiperiodic pulsed azimuthal flow transients poleward of the convection reversal boundary (CRB),

which they identified as the ionospheric signatures of FTEs.

The FTE signatures in the cusp ionospheric flows were proposed to be studied with the incoherent scatter radar (ISR)
(Cowley et al., 1990), and were later observed by the coherent scatter radars of the SuperDual Auroral Radar Network
(SuperDARN) (Pinnock et al., 1993, Provan et al., 1998), as well as the ISR in Svalbard (Oksavik et al., 2006). The Resolute
Bay Incoherent Scatter Radars (RISR), measuring ionospheric plasma parameters in the cusp and polar cap are well suited to
observe the FTE signatures (Gillies et al., 2016; 2018).

Cowley and Lockwood (1992) proposed that time-dependent magnetic reconnection and the resulting convection produce
polar cap patches from dayside enhanced ionospheric density of a tongue of ionization (TOI) that is drawn through the cusp
into the polar cap. lonospheric flow channels, primarily in the F-region ionosphere, produce depletions in the ionospheric
plasma, segmenting a TOI into patches (Pinnock et al., 1993, Rodgers et al., 1994; Valladares et al., 1994; 1996). These flow
channels are ionospheric signatures of magnetic reconnection events (FTES). The ionospheric signatures of the coupling
include pulsed ionospheric flows (PIFs) in the cusp, which have been observed by HF radars (Walker et al., 1986; Prikryl et
al., 1998; McWilliams et al., 2000). These PIFs can be modulated by solar wind Alfvén waves (Prikryl et al., 1999; 2002).
Solar wind Alfvén waves (Belcher and Davis, 1971) that couple to the magnetosphere-ionosphere system are associated with
high-intensity long-duration continuous auroral-eleetrejet activity (HILDCAA) (Tsurutani and Gonzalez, 1987; Tsurutani et
al., 1990). -Spacecraft observations of the polar cap and auroral zone noted auroral patches during HILDCAA intervals due

to the southward component of Alfvén waves causing reconnection (Guernieri et al., 2004; Guernieri 2006). The durations of

the southward component of Alfvén waves influence the geo-effectiveness, and the substorm and magnetic storm

developments. However, in this paper we focus on the immediate dayside ionospheric response to the IMF during the impact

of corotating interaction regions at the leading edge of high-speed streams.

The ionospheric currents, including auroral electrojets, have long been recognized as sources of atmospheric gravity waves
(AGWs) (Chimonas and Hines, 1970) propagating globally in the neutral atmosphere (Richmond, 1978; Hunsucker, 1982;
Mayr et al., 1984a; 1990; 2013). The AGWSs have been observed as traveling ionospheric disturbances (TIDs) in both the
dayside and nightside ionosphere using various techniques, including HF radars, ionosondes, and GPS Total Electron
Content (TEC) measurements (Hunsucker, 1982; Crowley and Williams, 1987; Crowley and McCrea, 1988; Samson et al.,
1989; Bristow and Greenwald, 1996; Afraimovich et al., 2000; Hayashi et al., 2010; Cherniak and Zakharenkova, 2018;
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Nishitani et al., 2019). Large-scale TIDs (LSTIDs) generally propagate at speeds between 400 and 1,000 ms—1, have

wavelengths greater than 1000 km, and periods of 30 - 180 min, while medium-scale TIDs (MSTIDs) tend to propagate at
speeds of 250 - 1,000 ms—1, and have wavelengths of several hundred kilometers and periods of 15 - 60 min (Francis, 1975;
Hunsucker, 1982; Zhang et al., 2019).

On the dayside, in addition to polar cap patches, the generation of AGWSs can be pulsed by the solar wind Alfvén waves
(Prikryl et al., 2005; 2019). In this paper, we present a case study of polar cap patches and TIDs generated in the dayside

ionosphere during minor to moderate geomagnetic storms.

2 Data sources and methods

The Resolute Bay Incoherent Scatter Radars (RISR-C and RISR-N) are located at a geographic latitude of 74.70°N and
geographic longitude of 94.83°W. The electronically steerable phased array radars, which are effectively capable of
sampling in multiple beam directions simultaneously, measure electron density, electron and ion temperature, and flow

velocities in the cusp and polar cap ionosphere (Gillies et al., 2016; 2018).

The Super Dual Auroral Radar Network (SuperDARN) (Chisham et al., 2007; Nishitani et al., 2019) is used to measure the
line-of-sight (LoS) velocities, to map ionospheric convection, and observe TIDs in the ground scatter (vt.superdarn.org).

Ground-based magnetometers from the Geophysical Institute Magnetometer Array (GIMA)
(www.asf.alaska.edu/magnetometer/), Geomagnetic Laboratory of the Natural Resources Canada (NRCan)
(www.spaceweather.ca), and the Canadian Array for Realtime Investigations of Magnetic Activity (CARISMA)

(www.carisma.ca/) are used to identify ionospheric currents as sources of AGWSs. The magnetometer data were also accessed

through SuperMAG (supermag.jhuapl.edu/mag) (Gjerloev, 2012) and INTERMAGNET (www.intermagnet.org).

The horizontal equivalent ionospheric currents (EICs) and vertical current amplitudes are estimated using the spherical
elementary current system (SECS) inversion technique. We applied the SECS inversion technique (Amm and Viljanen,
1999; Weygand, 2009; Weygand et al., 2009; Weygand et al., 2011) to obtain horizontal EICs and vertical current
amplitudes from 11 different arrays of ground magnetometers in the North American sector with stations in western
Greenland included. Following Weygand et al. (2011), for each of these stations the quiet-time background is subtracted

from the measured field to give the disturbance component which determines the EICs.

The Canadian High Arctic lonospheric Network (CHAIN) (Jayachandran et al., 2009) consists of ionosondes and GPS
lonospheric Scintillation and TEC Monitors (GISTMs) that are configured to record the power and phase of the L1
frequency (1575.42 MHz) and L2 frequency (1227.6 MHz) signals. In this study, both scintillation indices (S4 and sigma
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phi) and TEC are used. The TEC used in this study is determined using the phase leveling and cycle slip correction method
outlined in Themens et al. (2013), with satellite biases acquired from the Center for Orbit Determination in Europe (CODE,

ftp://ftp.aiub.unibe.ch/) and receiver biases determined as detailed in Themens et al. (2015).

In addition to the CHAIN data, Madrigal Line-of-Sight (LoS) TEC data was also gathered from
http://cedar.openmadrigal.org/ and used in this study to examine large scale TEC variations over North America. To
characterize the TID structures using this data, LoS TEC data from each satellite-receiver pair was detrended by first
projecting the LoS TEC to vertical TEC (VTEC) and removing the sliding 60-minute average. For more details on this

method, full details can be found in Themens et al. (2022). The vTEC anomalies are mapped along the SuperDARN radar

beams to be compared with the TIDs observed in the mapped ground scatter (Bristow et al., 1994).

The solar wind data are obtained from the Goddard Space Flight Center Space Physics Data Facility
(https://spdf.gsfc.nasa.gov/index.html)  and  the National ~ Space  Science  Data  Center  OMNIWeb

(http://omniweb.gsfc.nasa.gov) (King and Papitashvili, 2005). Specifically, the interplanetary magnetic field (IMF) data
obtained by ACE (Smith et al., 1999) and Geotail spacecraft (Kokubun et al., 1994) are used.

3 Generation of polar cap patches and traveling ionospheric disturbances modulated by solar wind Alfvén waves
Solar wind high-speed streams (HSSs) are permeated with solar wind Alfvén waves (Belcher and Davis, 1971) known to

cause substorms and geomagnetic storms (Tsurutani et al. 1990), particularly when associated with significant southward
IMF B;. Figs. 1a and 1b show the hourly OMNI data of solar wind plasma variables and the geomagnetic storm Dst index for
two periods in 2016 and 2018. Arrivals of corotating interaction regions (CIRs) at the leading edge of HSSs on March 6 and
14-15, 2016, and on May 5, 2018, triggered moderate to minor geomagnetic storms (Gonzalez et al., 1994) with the Dst
index reaching maximum negative values of =110, —60 and —64 nT, respectively. The HSS/CIRs were closely preceded by

heliospheric current sheets (HCS) (Smith et al., 1978) that are associated with high-density plasma leading to the magnetic

field compression (Smith and Wolfe, 1986; Tsurutani et al. 1995a). Solar wind Alfvén waves are characterized by the Walén

relation between velocity V and magnetic field B (e.g., Yang et al., 2020; and references therein). The corresponding
components of the IMF fluctuations and solar wind velocity are (anti)correlated (Prikryl et al., 2002) and this was the case
for the events studied here using observations by the ACE and Geotail spacecraft in the upstream solar wind. While the

Alfvén waves are also observed in the high-speed stream proper following the CIRs, the ionospheric response that is the

subject of this paper is limited to CIRs where the Alfvén wave amplitudes are higher due to the compression (Tsurutani et

al., 1995b), which likely plays a role in the magnetic reconnection at the dayside magnetosphere resulting in polar cap

patches and TIDs.
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3.1 lonospheric signatures of flux transfer events and polar cap patches

The RISR measurements of electron density, Ne, and flow velocities, Ve, in the cusp and polar cap ionosphere are used to
study four events of the solar wind Alfvén waves coupling to the dayside magnetopause generating polar cap patches. This is
supported by observations of HF radar line of sight (LoS) ionospheric velocities and convection maps by SuperDARN, of
polar patches over the CHAIN ionosondes, and of GPS scintillation receivers measuring phase variation (scintillation) index
oe. The horizontal equivalent ionospheric currents (EICs) that are estimated from the ground-magnetometer data using the
SECS inversion technique provide a broader context of the coupling process to ionospheric currents, including the auroral
electrojets.

3.1.1 Event of March 6, 2016

Fig. 2a shows N. and anti-sunward V. averaged over the longitude span of the RISR beams_(Gillies et al., 2016; see, their

Fig. 1) and altitudes between 250 and 450 km. The poleward propagating enhancements in N are due to polar cap patches
entering and exiting the RISR field of view (FoV). The time series of the ACE IMF By and B; are superposed, time shifted
for the best correlation (correspondence) with patches and anti-sunward flows, respectively, to approximately account for the
propagation delay between the spacecraft and the ionosphere. This indicates that the duskward deflections of the
predominantly dawnward IMF By (<0) resulted in a series of poleward convecting polar patches that are correlated with the
IMF By. The southward IMF was followed by anti-sunward flows that were diminished or stopped when the IMF B, switched
back to northward. While the sustained southward IMF B; is the condition for the continuous (quasi-steady) magnetic

reconnection it is the impulsive reconnection that leads to formation of polar cap patches.

The first few patches (enhancements in N¢) started to be observed by RISR-N north of 75°N -that-were-ebserved-by-RISR-N
between 16:00 and 17:00 UT _and were not detected by RISR-C (Fig. 2a). This implies that the cusp was in the RISR-C FoV

since polar patches are known to be produced by flow channels in the cusp. The very first density patch starting at ~16:00

UT followed the first IMF By duskward deflection after the onset of anti-sunward flows due to the southward B,. The FTE
signatures of the impulsive magnetic reconnection at the dayside magnetopause were observed by RISR-C in the cusp

ionosphere.

Fig. 3 shows the ionospheric currents (EICs) at 110 km mapped in geographic coordinates with the latitudinal maxima of
EICs at each longitude grid, highlighted in bold, indicating the locations of westward and eastward electrojets. The flow
vectors measured by RISR are coded in color. The GPS ionospheric pierce points (IPPs) at 110 km are shown as circles
scaled by the CHAIN GPS phase variation values, o4.; It has been shown (Prikryl et al., 2016; 2021a) that, in the auroral
zone, IPPs of strong GPS phase scintillation are largely collocated with the electrojet currents. are-diseussed-in-Section-3-3:3-

During the period between 15:40 and 17:40 UT of anti-sunward flows driven by the southward B, before it reversed to
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northward (Fig. 2a), frequent transient azimuthal westward flows were observed by RISR-C in the cusp that were associated
with the IMF By duskward deflections (Fig. 2a). The first two azimuthal flow channels intensified and faded between 15:47
to 15:51 UT (Fig. 3a) and between 15:54 and 16:01 UT. More transient azimuthal flows occurred during periods of 16:14-
16:16 UT, 16:29-16:39 UT, 16:48-17:00 UT, 17:07-17:12 UT (black rectangles in Fig. 2a) that are associated with duskward
deflections of the time-shifted IMF By at ~16:15, 16:35, 16:50, and 17:10 UT (black bars above the rectangles in Fig. 2a).
These transient azimuthal flows, some of which are shown in Fig. 3, occurred poleward of the CRB identified in the EICs
that show a reversal of currents just equatorward of the flow transients at geographic latitude of ~68°N. In some cases when
there was ionospheric backscatter the CRB is detectable in the LoS velocities observed by the Kapuskasing radar (not

shown).

The large-amplitude swing of the IMF B, northward stopped the anti-sunward flow for about 30 min (Fig. 2a). After the IMF
B, reversed back to southward the anti-sunward flow was restored and intensified. As the cusp shifted further equatorward
after the steep southward reversal of the IMF, azimuthal flow channels in the cusp were not observed any longer by RISR
that continued to observe anti-sunward flows and poleward convecting density patches. The patches that followed the
duskward IMF B, deflections must have been produced in the cusp south of RISR. Although the SuperDARN radars in
Kapuskasing (KAP) and Saskatoon (SAS; operating in a special mode) observed some of the anti-sunward flows the FTE
signatures of transient azimuthal flows could not be identified because of insufficient ionospheric backscatter, which was

often mixed with ground scatter.

RISR observed copious density patches propagating in the polar cap. The global ionospheric convection map (Fig. 4a) shows
an expanded convection zone with intense flows from the dayside portions of the dawn and dusk cells through the cusp and
into the polar cap, where the anti-sunward flows and patches were observed by RISR. The corresponding GPS TEC map
(Fig. 4b), as a function of the Altitude Adjusted Corrected Geomagnetic (AACGM) latitude and magnetic local time (MLT),
shows a TOI broken into patches. For the GPS phase variation values o4 > 0.1 rad, the IPPs at 350-km altitude that are

superposed on the TEC map are collocated with the TOI fragmented into patches (further discussed in Section 3.3).

3.1.2 Events of March 14-15, 2016

Following the arrival of HSS/CIR that caused a minor geomagnetic storm (Fig. 1a) a series of polar cap patches were
generated by solar wind Alfvén waves coupling to the dayside magnetosphere on March 14 and 15. Anti-sunward flows and
density patches convecting poleward were observed by RISR (Fig. 2b and 2c). Similar to the event discussed in the previous
section, the patches are approximately correlated with the IMF By duskward deflections of the time-shifted and

predominantly dawnward IMF By (<0) observed by the Geotail spacecraft passing in front of the subsolar bow shock.
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On March 14, the main difference is that the IMF B, remained predominantly northward (>0) but underwent frequent
reversals to southward. The large northward B, before 19:10 UT resulted in a reduced ionospheric convection zone that was,
due to duskward By (>0), dominated by the dusk convection cell, but also a reverse (two-)cell convection in the noon sector
(see, e.g., Gosling et al., 1990; Crooker et al., 1992; Provan et al., 2005; Lu et al., 2011). With the reverse convection (lobe)
cell over Resolute Bay, RISR observed sunward and duskward flows, a signature of the lobe reconnection. At this time, the

RISR observed electron densities, which were not segmented into poleward propagating patches.

At ~19:10 UT the flows reversed from sunward to anti-sunward following the IMF B; reversal to southward that resulted in a
magnetic reconnection pulse at the dayside magnetopause and the convection settled into a regular two-cell pattern. At the
same time, as the IMF By was reversing from duskward (>0) to dawnward, it oscillated and rebounded briefly duskward. At
19:10 UT, RISR observed a complex mixture of dawnward and duskward (westward and eastward) transient azimuthal flows
(Fig. 5a) what could be a mixture of lobe and subsolar FTE signatures in the cusp ionosphere. This was followed by anti-
sunward flows and by a density patch that convected poleward in the RISR-N FoV (Fig. 2b). Another azimuthal flow
channel occurred at 19:22-19:23 UT (Fig. 5b) but the IMF B, reversed to northward and the anti-sunward flows ceased.

After the IMF turned southward for the second time, the anti-sunward flows were restored, a duskward deflection of the IMF
By followed, a strong azimuthal flow channel was observed by RISR-C (Fig. 5¢) and a density patch convected poleward
with the antisunward flow (Fig. 2b). Following the next southward B, dip accompanied by a duskward deflection of B,
RISR-C observed intense azimuthal flows, RISR-N observed enhanced anti-sunward flows (Fig. 5d), and the next density
patch convected poleward just after 20:00 UT (Fig. 2b). Although the propagation delay used in Fig. 2 is only approximate
and may vary with time, the same arguments can be applied to density patches observed after 21:00 UT except that the cusp
moved south of the RISR FoV. The anti-sunward flows appear to have intensified with each southward swing of the IMF B,
associated with a duskward deflection of By, and the patches were produced.

The southward B; is known to drive pulsed ionospheric flows (PIFs) (McWilliams et al., 2000). Starting with the first IMF
southward turning, PIFs were observed by the SuperDARN Saskatoon (SAS) radar in the LoS ionospheric velocities
(negative is away from the radar) (Fig. 6). Even though the ionospheric backscatter was relatively sparse there is an

approximate correspondence between the southward swings of the IMF B; and PIFs.

Polar cap patches observed by RISR on March 15 are also approximately correlated with the IMF B, duskward deflections of
the time-shifted and predominantly dawnward IMF By (<0) observed by Geotail spacecraft (Fig. 2c) that was located in front
of the post-noon bow shock. The anti-sunward flows started at ~18:20 UT following the southward IMF B, and continued for
another 3 hours until RISR moved out from the convection throat and deeper into the post noon sector. Following the

southward B, and duskward By turning at ~18:10 UT the cusp rapidly shifted equatorward of the RISR FoV, a brief transient
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azimuthal flow was observed (not shown), and the first density patch convected poleward and reaching 75.5°N latitude at

18:30 UT (Fig. 2c). The production of polar patches was inhibited, or reduced, when B, become positive or near zero.

The density patches that followed were produced while the cusp was equatorward of RISR. At ~19:30 UT when the IMF B,
reached zero and become mildly positive the cusp re-entered the RISR-C FoV. The next weak patch that was not observed
by RISR-C started to be seen by RISR-N (75.5°N the cusp) at 19:45 UT. With the IMF B, fluctuating around zero and
following the duskward By deflection a brief transient azimuthal flow burst was observed at 19:40 UT (not shown). The rest
of the density patches after 20:00 UT all started to be observed at 70°N when the cusp again moved equatorward, or to the
southern edge, of the RISR FoV. The latter was likely the case for the dense patch observed starting at ~20:40 UT following
the onset of anti-sunward flow associated with the southward B, when an azimuthal eastward flow channel was observed in

the southern edge of RISR (not shown).

3.1.3 Event of May 5, 2018

Similar to the March 6, 2016, fast anti-sunward flows but weaker polar cap patches (Fig. 2d) were approximately correlated
with the time-shifted large amplitude alfvénic fluctuations of the IMF B, and B, components, respectively. After the IMF By
reversed from duskward (>0) it remained predominantly dawnward (<0) but was undergoing frequent duskward deflections.
The large-amplitude southward turnings of the IMF were followed by anti-sunward flows that were reversed or diminished
when the IMF B; switched back to northward. In the cusp, a series of PIFs were observed by the Kapuskasing radar. Fig. 7
shows the line-of-sight ionospheric velocities with the ground scatter coded in grey color. Despite the ground scatter
interference and sparse ionospheric backscatter an approximate correspondence can be made between the time-shifted IMF
By and PIFs prior to 19:00 UT that is similar to the correlation with polar cap patches observed by RISR (Fig. 2d). Most of
the PIFs appear to have been driven by the duskward IMF By deflections. This is consistent with the transient flows observed

by Provan et al. (1998), except in their case the IMF By was predominantly duskward (>0).

Before 17:00 UT, when the polar cap patches were observed by RISR-N, the cusp was in the RISR-C FoV. The first
poleward propagating weak density enhancement appeared in the RISR-N FoV (75.5°N) at ~14:50 UT following the onset of
anti-sunward flow due to the southward B, and the first duskward deflection of the IMF By before it remained predominantly
dawnward (Fig. 2d). More density patches started to be observed from 16:00 UT. While the cusp was in the RISR-C FoV
transient azimuthal flows occurred during periods of 14:49-14:56 UT, 15:39-15:50 UT, 15:55-16:01 UT, 16:09-16:11 UT,
16:28-16:29 UT, 16:35-16:36 UT, 16:54, 17:07, and 17:25-17:27 UT (black rectangles in Fig. 2d) that are associated with
duskward deflections of the time-shifted IMF By at ~14:47, 15:46, 16:00, 16:11, 16:29, 16:35, and 17:00 UT (black bars
above the rectangles in Fig. 2d). Fig. 8 shows four examples of azimuthal transient flows that occurred poleward of the CRB,

which is consistent with observations of FTE signatures (Provan et al., 1998).
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Following the intensification of the anti-sunward flow caused by the southward B, turning at 17:50 UT the highest density
patch convected across the whole RISR FoV starting just before 18:00 UT (Fig. 2d). The cusp has shifted equatorward and
RISR could not observe azimuthal flows, but a narrow PIF was observed by the Kapuskasing radar at lower latitudes (Fig.
7). While most of the density patches were associated with a significant southward IMF B, the next patch was observed
between 19:10 and 20:00 UT (Fig. 2d) when the IMF B, fluctuated about zero. Nevertheless, brief azimuthal flows were
observed at the southern edge of RISR-C FoV at 19:04-19:05 UT (not shown).

In comparison with the March events the electron densities of the patches were lower and did not result in any significant

GPS phase variation o4, which is discussed in Section 3.3.

3.2 Traveling ionospheric disturbances

The electric fields that drive the E x B ionospheric convection in the F region map to the E-region driving ionospheric
currents, including auroral electrojets. The ionospheric currents are sources of Joule heating in the lower thermosphere
launching atmospheric gravity waves (AGWSs), which in turn cause traveling ionospheric disturbances (TIDs). In this
section, we examine the observations of AGWSs/TIDs generated by solar wind Alfvén waves coupling to the dayside
magnetosphere during the four events discussed above. Figs. 9a-d show TIDs observed in the detrended vertical vTEC and
the radar ground-scatter power focused and defocused by TIDs In the case of LSTIDs with a wavelength of more than 1000

km the tilted isopycnic surfaces divert the refracted radio waves back and forth thus modulating the range of the ground

scatter. moving equatorward. -The time-shifted time series of the IMF B, observed by ACE or Geotail are superposed.

3.2.1 TIDs on March 6, 2016

Fig. 9a shows TIDs observed in the ground scatter power and in the VTEC anomaly mapped at range gates along the
Christmas Valley West (CVW) radar beam 12 (Fig. 10a) looking northwest over western Canada on March 6, 2016. Rather
than showing the ground scatter slant range, the ground scatter range mapping discussed by Bristow et al. (1994) and Frissell
et al. (2014) is applied to reflect the TID location in the ionosphere. In-additionto-tThe IMF B;, the X component of the

ground magnetic field measured in Baker Lake (BLC), and time series of the latitudinal maxima in EICs at the longitude of

99.6°W, are superposed. As the fluctuating IMF started to turn southward fluctuating ionospheric currents sensed by

magnetometers launched AGWs.

While the HF propagation may introduce some uncertainty to the radar observations of TIDs there is a one-to-one
correspondence between the BLC X-component fluctuations due to westward currents inverted to EICs and the TIDs
(marked 1 to 5 in Fig. 9a). After ~19:00 UT it was the eastward electrojet intensifications that launched TIDs (marked 6 to

9). Along the radar beam at near ranges, there is an approximate one-to-one correspondence between the vTEC anomaly
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variations due to TIDs that propagated to midlatitudes and the TIDs observed in the ground scatter, although TIDs 1 and 2
are not resolved in the vTEC anomaly. At far ranges, MSTIDs and LSTIDs before and after ~19:00 UT, respectively, are
observed propagating from their sources, the ionospheric currents at high latitudes. The LSTIDs are correlated with the long-

period fluctuations of the IMF B,, while the MSTIDs appear to be consistent with shorter period IMF fluctuations.

Figs. 3c and 3d were selected to show transient azimuthal flows observed by RISR at 16:30 and 16:52 UT. These times
approximately correspond to the times of EICs maxima (Fig. 9a) due to the westward electrojet spanning from Alaska across
the northern Canada that likely launched TIDs 1 and 2. Because of the limited coverage by GPS receivers at high latitudes
the MSTIDs could be detected only over Alaska/Yukon, but LSTIDs were observed at midlatitudes after ~19:00 UT. Fig.
11a shows intense westward and eastward electrojets that launched the LSTID 5 (Fig. 9a) that was observed in the detrended
VTEC maps an hour later (Fig. 11b). The LSTID 7 that was launched at ~20:00 UT by an intensification of eastward
electrojet (Fig. 11c) later propagated to midlatitudes. Fig. 11d shows it stretching from the west coast. The non-propagating
enhanced vTEC region at higher latitudes stretching from the central to eastern Canada is due to storm enhanced density

discussed in Section 3.3.

The one-to-one correspondence between the IMF B, fluctuations and auroral currents that launched the TIDs is less evident,
but the IMF B, fluctuations were similar to the X-component measured by another magnetometer further west in Barrow
(BRW), Alaska, between ~16:30 and 19:00 UT (not shown). However, the coupling of solar wind ULF waves to the
magnetosphere is a complex process that can involve pressure pulses, mode conversion to fast mode waves and field line
resonances on closed magnetic field lines (e.g., Prikryl et al., 1998; and references therein). There were large proton densities
(up to ~35 cm®) and dynamic pressure fluctuations (up to 13 nPa) observed in the solar wind (not shown) that likely

contributed to modulating the ionospheric currents.

3.2.2 TIDs on March 14-15, 2016

Fig. 9b shows TIDs (1-9) observed by the CVE radar beam 5 (Fig. 10b) looking northeast over the western and central
Canada on March 14, 2016. The detrended VTEC along the beam appears to have detected MSTIDs at ranges between ~500
and 1000 km before ~19:30 UT, and LSTIDs thereafter, but MSTIDs 5-6 and the structure preceding the LSTID 7 that can

be seen in the ground scatter are not resolved in the vVTEC anomaly.

Superposed time series of the latitudinal maxima in EICs are averages over longitudes between 70° and 110°W. The
southward IMF B, dips of the IMF that modulated the anti-sunward flows and produced polar cap patches (Fig. 2b) also
played a role in driving intensifications of ionospheric currents launching AGWSs/TIDs. The latitudinal maxima in EICs

indicate the initiation (launch) times of AGWs that approximately correspond with TIDs observed by the CVE radar.
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There is an approximate correspondence between the southward turning of the IMF B, and EICs/TIDs 1-6. This becomes less
clear after 20:00 UT partly because of westward and eastward electrojet intensifications at different latitudes. The fluctuating
EIC that peaked at 20:34 UT due to westward current at high latitudes was associated with a fluctuation of the ground scatter
power but the corresponding fluctuation in the vVTEC anomaly at close range (~200 km) is poorly resolved. The southward
turning of the IMF B, at ~21:00 UT (Fig. 9b) coincided with the launch of LSTID 7. The next southward turning of the IMF
is associated with a peak in EIC at 21:10 UT but this time due to the eastward electrojet at significantly lower latitudes (Fig.
12a). Beam 5 does not reveal a distinct TID signature, except for the ground scatter power increase. However, another TID
(7+) initiation superposed on the TID 7 was observed by beams 0 and 1 (not shown). The LSTID 7+ was later observed in
the detrended VTEC maps (Fig. 12b).

The LSTID 8 and 9 were observed by the CVE radar starting at ~22:00 and 22:30 UT. Although two peaks in the averaged
eastward EICs are not well resolved the LSTIDs that are associated with southward turnings of the IMF B, were launched by
intensifications of the eastward electrojet (Figs. 12c). The stronger LSTID 9 was later observed overtaking the weaker
LSTID 8 ahead of it over the southern U.S. (Figs. 12d).

On March 15, 2016, the CVE radar beam 15 (Fig. 10c) looking northeast across the northwestern U.S. and eastern Canada
observed LSTIDs in the ground scatter (Fig. 9¢) at far ranges on the second HF propagation hop between the ground and
ionosphere, which introduces some uncertainty in the HF propagation. These LSTIDs were launched by intense westward
and eastward electrojet currents modulated by long period variations of the IMF B, observed by Geotail. The time series of
the latitudinal maxima in EICs at the longitude of 92.7°W show long period EIC variations that are associated with the
LSTIDs and correspond with the vTEC anomaly variations mapped along the beam. The equatorward propagating LSTIDs
were observed in the detrended VTEC maps as they started to appear along the border between the U.S. and Canada. Figs.
13a and 13b show intensifications of the westward and eastward electrojets that launched the LSTIDs observed later in the
detrended VTEC maps (Fig. 13c-d).

3.2.3 TIDs on May 5, 2018

Fig. 9d shows TIDs observed by the BKS radar beam 15 (Fig. 10d) looking northwest over the central Canada on May 5,
2018. There is a one-to-one correspondence between the large-amplitude IMF B, due to solar wind Alfvén waves and T1Ds
observed in the ground scatter and the vVTEC anomaly mapped along the beam. Also, the peaks in the time series of the
maximum EICs at longitude of 134°W are correlated with the southward IMF B, and the TIDs. While at this longitude the

first two latitudinal maxima of EICs associated with TIDs are weak, at longitudes of 148° and 155°W (not shown) these
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peaks are more pronounced and coincide with the first two TIDs and the time-shifted IMF B, negative peaks. The peaks of

the latitudinal maxima of EICs indicate approximate times when the AGWs that caused the TIDs were launched.

The southward IMF turnings due to large-amplitude Alfvén waves (12:00-18:00 UT) were followed by intensifications of the
auroral electrojets each launching a TID (Fig. 9d). The next EIC intensification at ~18:30 UT launched another strong TID.
As the Geotail IMF B; turned from southward to mildly northward and fluctuated, weaker TIDs followed between 20:00 and
21:30 UT. After the IMF turned to southward again strong TIDs were observed again. Figs. 14a and 14b show
intensifications of the westward and eastward electrojets that launched the LSTIDs observed later in the detrended VTEC
maps (Fig. 14c-d).

3.3 GPS phase variation in the cusp, polar cap and auroral oval

The CHAIN GPS phase variation has been linked to polar cap patches, cusp and auroral precipitation/currents (Prikryl et al.,
2011; 2016; 2021a). While this is not the focus of the present paper, it is of interest to compare the above events in terms of

the temporal and spatial occurrence of the GPS TEC and phase variation.

The strongest polar cap patches that were observed by RISR (Fig. 2a) convected over the CADI ionosondes in Resolute Bay
and Eureka. The fixed frequency ionogram from Eureka (Fig. 15a) shows the passing density patches in the zenith over the
ionosonde as the U-shaped structures. The calibrated GPS VTEC corrected for biases shows a good correspondence with the
patches observed by the ionosonde. The relative variations of the slant TEC resulted in GPS phase variation, ¢4, reaching up
to 1 rad (Fig. 5¢). In comparison, on March 14-15, 2016 and May 5, 2018 the patches observed by ionosondes were
significantly weaker and caused only weak to moderate GPS phase variations.

Fig. 16a-d shows the percentage occurrence of phase variation, o, above a given threshold as a function of the Altitude
Adjusted Corrected Geomagnetic (AACGM) latitude and magnetic local time (MLT). The percentage occurrence is
determined for the grid bins of 0.25 h MLT x 1° AACGM latitude assuming the IPP height of 350 km (Prikryl et al., 2016).
The moderate geomagnetic storm on March 6, 2016 (Fig. 16a) resulted in the highest occurrence of GPS phase variation
caused by the fast convection of the storm enhanced density (SED) plasma irregularities from the dayside ionosphere
through the cusp where the TOI was segmented into polar cap patches. In Fig. 4 discussed in Section 3.1.1, the CHAIN GPS
IPPs are superposed on the ionospheric convection and GPS TEC maps as a function of magnetic latitude and MLT. The

IPPs shown as circles scaled by the GPS phase variation values, o4, are collocated with the TOI fragmented into patches.

In relation to the auroral electrojets, Figure 17 shows the GPS phase variation occurrence as a function of AAGCM latitude
and UT overlaid with contours of the east component of the EIC Jy current averaged over the longitude grids between 86°

and 93°W with the EICs transformed to geomagnetic coordinates using the magnetic declination at each grid cell. To
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conform to the 15 min grid span used for the scintillation occurrence map, the west-to-east J, current component is averaged
over 15 min. Consistent with the previous results (Prikryl et al., 2016) the highest occurrence of GPS phase scintillation in
the auroral zone is associated with the westward electrojet and the poleward edge of the eastward electrojet. At high
latitudes, the highest occurrence of o4 > 0.1 rad is in the cusp and polar cap during times of dense polar cap patches observed
by RISR (Fig. 2a).

For specific times the GPS IPPs of enhanced phase variation are shown in Figs. 3 and 11 discussed in the previous sections.
The IPPs are found to be collocated with the convection reversal boundary and the westward electrojet (Fig. 3), and the
poleward edge of the eastward electrojet (Fig. 11a). At high latitudes, even when fast azimuthal flows were observed by
RISR they were not collocated with above-threshold values of o4 (Figs. 3a and 3b). It was only when dense polar cap
patches convected over the RISR FoV that IPPs with moderate values of o, were collocated with the fast anti-sunward flows
(Figs. 4).

The minor geomagnetic storms caused significantly less GPS phase variation (Figs. 16c-d). Although large GPS phase
variation were collocated with auroral electrojets (Figs. 5 and 14), and some were caused by polar cap patches on March 14-
15, 2016, there was very little, or no significant GPS phase variation, associated with the weak polar cap patches in the polar
cap on May 5, 2018 (Figs. 8, 16d and 18a). However, even during the latter event Fig. 18a the highest occurrence of GPS
phase variation in the auroral zone was associated with the westward electrojet and boundaries between the westward and
eastward electrojets. Similar association of the GPS phase variation occurrence with the electrojets is found during the minor
geomagnetic storm on March 14-15, 2016 (not shown). The highest occurrence was during the growth phase of the storm
(Fig. 16b) when the GPS phase variation was observed mainly in the cusp and polar cap, but also in the post-noon auroral
zone (dusk convection cell and SED), nightside auroral zone and possibly a subauroral polarization stream (Prikryl et al.,
2016).

4 Discussion

The presented multi-instrument observations of polar cap patches in the Canadian Arctic are consistent with previously

published results (e.g., Provan et al, 1998) that support the accepted model of polar patch formation (Cowley and Lockwood,

1992). Transient azimuthal flows in the cusp that resulted in the formation of polar cap patches were associated with the IMF

By fluctuations due to solar wind Alfvén waves. Pulsed ionospheric flows modulated by solar wind Alfvén waves followed

by polar cap patches were previously observed (Prikryl et al., 1999; 2002).

The large-amplitude solar wind Alfvén waves in the CIRs at the leading edge of HSSs also modulated the ionospheric

currents that were estimated from the ground-based magnetometer data using an inversion technique. The ionospheric
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currents have been recognized as sources of AGWSs causing T1Ds. Of course, AGWSs/TIDs can be generated by various other

sources, including tropospheric weather systems (Bertin et al., 1975, 1978; Waldock and Jones, 1987; Oliver et al., 1997;

Nishioka et al. 2013), polar vortex (Frissell et al., 2016), volcanic eruptions, earthquakes, and tsunamis (e.qg., Nishitani et al.,

2019; Themens et al., 2022), as well as phenomena associated with ion-neutral interactions (Nishitani et al., 2019). However,

the case studies of equatorward propagating TIDs observed by SuperDARN and GNSS receivers presented in this paper

clearly point to dayside ionospheric currents modulated by solar wind Alfvén waves. This is consistent with the previously
published results (Prikryl et al., 2005).

Milan et al. (2017; see, their Fig. 2) reviewed the morphology and dynamics of the electrical current systems of the terrestrial

magnetosphere and ionosphere that include DP1, DP2 and DPY currents. The patch formation has been associated with the

By-modulated DPY currents (Hall currents associated with FCEs) (Friis-Christensen and Wilhjelm, 1975; Clauer et al.,

1995; Stauning et al. 1994, 1995; Prikryl et al. 1999). In the high conductance auroral zone, Hall currents form the eastward

and westward auroral electrojets, and the corresponding magnetic perturbations on the ground associated with these Hall

currents, are known as the DP1 and DP2 patterns. However, this paper is concerned with the dayside currents, so the TIDs

were caused primarily by the DP2 current intensifications.

Finally, it is noted that solar wind coupling to the dayside magnetosphere-ionosphere-atmosphere generating globally

propagating gravity waves has been proposed to play a role in the occurrence of extreme weather (Prikryl et al., 2018; 2019,

2021b).

5 Summary and conclusions

Production of polar cap density patches and traveling ionospheric disturbances during minor to moderate geomagnetic
storms caused by corotating interaction regions at the leading edge of high-speed streams is studied using incoherent scatter
radars and networks of HF radars, ionosondes and magnetometers, and GPS receivers. Solar wind Alfvén waves modulated
the magnetic reconnection at the dayside magnetopause. The ionospheric signatures of flux transfer events that resulted in
formation of polar cap patches were observed in the cusp. The coupling process also modulated the ionospheric convection
and the intensity of ionospheric currents, including the auroral electrojets. The horizontal equivalent ionospheric currents
were estimated from the ground-based magnetometer data using an inversion technique. Intensifications of ionospheric
currents launched atmospheric gravity waves causing traveling ionospheric disturbances that were observed in the HF
ground scatter and detected in the detrended GPS VTEC maps. The GPS phase scintillation index obtained by specialized
GPS scintillation receivers was highest during the moderate geomagnetic storm. The GPS phase variation was caused by

intense convection of storm enhanced density plasma through the cusp into a dense tongue of ionization segmented into

14



465

470

475

480

485

490

patches. In the auroral zone the highest occurrence of GPS phase variation was collocated with the westward electrojet and

boundaries between the westward and eastward electrojets.
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Figure 4: (a) lonospheric convection and potential maps showing expanded convection zone and (b) tFhe GPS TEC as a
function of magnetic latitude and magnetic local time (MLT). The CHAIN GPS IPPs at 350 km shown as circles scaled by

the GPS phase variation values, o4, are superposed.
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Figure 9: TIDs observed in the radar ground-scatter power and the detrended TEC along (a) the CVW radar beam 12 on
March 6, 2016, (b) the CVE radar beam 5 looking on March 14, 2016, (c) the CVE radar beam 15 on March 15, 2016, and
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superposed.
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later times on May 5, 2018.
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EUREKA CAD| 4 2 MHz frequency ionogram
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Figure 15: (a) The fixed 4.2-MHz frequency ionogram, the GPS (b) vTec, and (c) phase variation observed from Eureka on
830 March 6, 2016.
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Figure 16: The percentage occurrence of the GPS phase variation o4 > 0.1 rad mapped in coordinates of AACGM latitude
and MLT during geomagnetic storms on (a) March 6, (b) March 14, (c) March 15, 2016, and (d) May 5, 2018. Boundaries of

835 the statistical auroral oval are shown.

38



CHAIN: 6 MAR 2016 OCCURRENCE OF 0,>0.1rad | glev>30°
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Figure 17: (a) The GPS phase variation occurrence as a function of AAGCM latitude and UT on March 6, 2016. Contours

840 of the westward and eastward EICs are shown in white solid and broken lines, respectively. (b) Westward and eastward EICs

are shown in blue and brown shades.
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CHAIN: 5 MAY 2018
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Figure 18: The same as Fig. 17 but for May 5, 2018.
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