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Abstract. Despite the close relationship between planetary science and plasma physics, few advanced numerical tools allow

to bridge the two topics. The code Menura proposes a breakthrough towards the self-consistent modelling of these overlapping

fields, in a novel 2-step approach allowing for the global simulation of the interaction between a fully turbulent solar wind and

various bodies of the solar system. This article introduces the new code and its 2-step global algorithm, illustrated by a first

example: the interaction between a turbulent solar wind and a comet.5

1 Introduction

TEXT

For about a century, three main research fields have taken an interest in the various space plasma environments found around

the Sun. On the one hand, two of them, namely planetary science and solar physics, have been exploring the solar system, to

understand the functioning and history of its central star, and of its myriad of orbiting bodies. On the other hand, the third one,10

namely fundamental plasma physics, has been using the solar wind as a handy wind tunnel which allows researchers to study

fundamental plasma phenomena not easily reproducible on the ground, in laboratories. During the last decades, the growing

knowledge of these communities lead them to research on ever more overlapping topics. For instance, planetary scientists were

initially studying the interaction between solar system bodies and a steady, ideally laminar solar wind, but they soon had to

consider its eventful and turbulent nature to go further in the in situ space data analysis, further in their understanding of the15

interactions at various obstacles. Similarly, plasma physicists were originally interested in a pristine solar wind unaffected by

the presence of obstacles. They however realised that the environment close to these obstacles could provide combinations of

plasma parameters otherwise not accessible to their measurements in the unaffected solar wind. For a while now, we have seen

planetary studies focusing on the effects of solar wind transient effects (such as Coronal mass Ejection CME or Co-rotational

Interaction Region CIR) on planetary plasma environments, at Mars (Ramstad et al., 2017), Mercury (Exner et al., 2018), Venus20

(Luhmann et al., 2008) and comet 67P/C-G (Edberg et al., 2016; Hajra et al., 2018) to only cite a few, the effect of large scale

fluctuations in the upstream flow on Earth’s magnetosphere (Tsurutani and Gonzalez, 1987), and more generally the effect

of solar wind turbulence on Earth magnetosphere and ionosphere (D’Amicis et al., 2020; Guio and Pécseli, 2021). Similarly,
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plasma physicists have developed comprehensive knowledge of plasma waves and plasma turbulence in the Earth magne-

tosheath, presenting relatively high particle densities and electromagnetic field strengths, favourable for space instrumentation,25

and in a region more easily accessible to space probes than regions of unaffected solar wind (Borovsky and Funsten, 2003;

Rakhmanova et al., 2021). More recently, the same community took an interest in various planetary magnetospheres, depicting

plasma turbulence in various locations and of various parameters (Saur, 2021), and all references therein.

Various numerical codes have been used for the global simulation of the interaction between a laminar solar wind and so-

lar system bodies, using MHD (Gombosi et al., 2004), hybrid (Bagdonat and Motschmann, 2002), or fully kinetic (Markidis30

et al., 2010) solvers. Similarly, solar wind turbulence in the absence of an obstacle has also been simulated using similar MHD

(Boldyrev et al., 2011), hybrid (Franci et al., 2015), and fully kinetic (Valentini et al., 2007) solvers. In this context, we identify

the lack of a numerical approach for the study of the interaction between a turbulent plasma flow (such as the solar wind)

and an obstacle (such as a magnetosphere, either intrinsic or induced). Such a tool would provide the first global picture of

these complex interactions. By shedding new lights on the long-lasting dilemma between intrinsic phenomena and phenomena35

originating from the upstream flow, it would allow invaluable comparisons between self-consistent, global, numerical results,

and the worth of observational results provided by the various past, current and future exploratory space missions in our solar

system.

The main points of interest and main questions motivating such a model can be organised as such:40

– Macroscopic effects of turbulence on the obstacle

– shape and position of the plasma boundaries (e.g. bow shock, magnetopause),

– large scale magnetic reconnection,

– atmospheric escape,

– dynamical evolution of the magnetosphere.45

– Microscopic physics and instabilities within the interaction region, induced by upstream turbulence

– energy transport by plasma waves,

– energy conversion by wave-particle interactions,

– energy transfers by instabilities.

– The way incoming turbulence is processed by planetary plasma boundaries50

– sudden change of spatial and temporal scales,

– change of spectral properties,

– existence of a memory of turbulence downstream magnetospheric boundaries.
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Indirectly, because of the high numerical resolution required to properly simulate plasma turbulence, this numerical exper-

iment will provide an exploration of the various obstacles with the same high resolution in both turbulent and laminar runs,55

resolutions that have rarely been reached for planetary simulations, except for Earth’s magnetosphere.

Menura, the new code presented in this publication, splits the numerical modelling of the interaction into two steps. Step

1 is a decaying turbulence simulation, in which electromagnetic energies initially injected at the large spatial scales of the

simulation box cascades towards smaller scales. Step 2 uses the output of Step 1 to introduce an obstacle moving through this60

turbulent solar wind.

The code is written in c++ and uses CUDA APIs for running its solver exclusively on multiple Graphics Processing Units

(GPUs) in parallel. Section 2 introduces the solver, which is tested against classical plasma phenomena in Section 3. Sections

4 and 5 tackle the first and second step of the new numerical modelling approach, illustrating the decaying turbulence phase,

and introducing the algorithm for combining the output of Step 1 together with the modelling of an obstacle (Step 2). Section65

6 presents the first global result of Menura, providing a glimpse of the potential of this numerical approach, and introducing

the forthcoming studies.

Menura source code is open source, available under the GNU General Public License.

2 The solver70

In order to (i) achieve global simulations of the interactions while (ii) modelling the plasma kinetic behaviour, with regard

to the computation capabilities currently available, a hybrid Particle-In-Cell (PIC) solver has been chosen for Menura. This

well-established type of model resolves the Vlasov equation for the ions by discretising the ion distribution function as macro-

particles characterized by discrete positions in phase space, and electrons as a fluid, with characteristics evaluated at the nodes

of a grid, together with ion moments and electromagnetic fields. The fundamental computational steps of a hybrid PIC solver75

are:

– Particles’ position advancement, or “push”.

– Particles’ moments mapping, or “gathering”: density, current, eventually higher order, as required by the chosen Ohm’s

law.

– Electromagnetic field advancement, using either an ideal, resistive or generalised Ohm’s law and Faraday’s law.80

– Particles’ velocity advancement, or “push”.

These steps are summarised in Figure 1. Details about these classical principles can be found in (Tskhakaya, 2008) and

references therein. The bottleneck of PIC solvers is the particles’ treatment, especially the velocity advancement and the

moments computation (namely density and current). The simulation of plasma turbulence especially requires large amounts
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of macro-particles per grid nodes. We therefore want to minimise both the amount of operations done on the particles and the85

number of particles itself. A popular method which minimises the amount of these computational passes through all particles

is the Current Advance Method (CAM) (Matthews, 1994), for instance used for the hybrid modelling of turbulence by (Franci

et al., 2015). Figure 1 presents Menura’s solver algorithm, built around the CAM, similar to the implementation of (Bagdonat

and Motschmann, 2002). In this scheme, only four passes through all particles are performed, one position and one velocity

pushes and two particle moments mappings. The second moment mapping in Figure 1, i.e. step 2, also produces the two90

pseudo-moments Λ and Γ used to advance the current as:

Λ =
∑
p

q2

m
W (rn+1), (1)

Γ =
∑
p

q2

m
vn+1/2W (rn+1), (2)

Jn+1 = Jn+1/2 +
∆t

2
(ΛE∗+ Γ×B), (3)

with E∗ the estimated electric field after the magnetic field advancement of step 4. W (rn+1) is the shape function, which95

attributes different weights for each node surrounding the macro-particle (Tskhakaya, 2008).

Central finite differences using a five-point stencil for evaluating derivatives as well as second order interpolations are used

throughout the solver. The algorithm evaluates all fields values at the nodes (or equivalently cell-centres in this precise case)

of the grid. In Appendix B, we discuss how such a scheme actually conserves ∇ ·B = 0, as initially shown by (Tóth, 2000).

Additionally, Appendix B illustrates the evolution of the total energy of the system.100

The grid covering the physical simulation domain has an additional 2-node wide band, the guard or ghost nodes, allowing to

solve derivatives using (central) finite differences at the very edge of the physical domain. For periodic boundary conditions,

as used along all directions during Step 1 of the simulation, the value at the opposite edge of the physical domain are copied to

the guard nodes. Other boundary conditions will be discussed later when introduced.

The mapping of the particle moments are done using an order-two, triangular shape function: one macro-particle contributes105

to 9 grid nodes in 2D space ( respectively 27 in 3D space), using 9 (respectively 27) different weights. The interpolation of the

field values from the nodes to the macro-particles’ positions uses the exact same weights, with 9 (respectively 27) neighbouring

nodes contributing to the fields values at a particle position.

As illustrated in Figure 1, the position and velocity advancements are done at interleaved times, similarly as a classical sec-

ond order leap-frog scheme. However, since the positions of the particles are needed to evaluate their acceleration, the CAM110

scheme is not strictly speaking a leap-frog integration scheme. Another difference in this implementation is that velocities are

advanced using the Boris method (Boris, 1970).

The Ohm’s law is at the heart of the hybrid modelling of plasmas. Menura uses the following form of the law, here given

in SI units. In this formulation, the electron inertia is neglected, and the quasi-neutral approximation n∼ ni ∼ ne is used115
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rn

Step 1 
Step 0 

  -- Position push
  -- Moments, Free-streaming J-

Step 2   -- Moments, Free-streaming J+ 
Step 3   -- Moments averaging 
Step 4   -- Faraday/Ohm’s laws 
Step 5   -- Generalised Ohm’s law, E estimate
Step 6   -- Current advance
Step 7   
Step 8      -- Velocity push, Boris

vn+3/2

Step 8 

Step 1   (vn+1/2 , rn )

En+0/5
En+1/5 En+2/5

En+3/5 En+4/5 E*

Ba

Bn

Ba

Step 5  (Bn+1 , J+ , ρn+1 )

(Bn+1 , Jn+1 , ρn+1 )

(Bn+1 , En+1 , vn+1/2 , rn+1 )

(Jn+1/2 , Λn+1 , Γn+1  )

Step 7   

Step 4

Step 6

Bn+1/5  Bb Bn+2/5  Ba Bn+3/5  Bb Bn+4/5 Ba
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Step 0 Step 2
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Γn+1
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vn+1/2
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Bn+1
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En+1

  -- Generalised Ohm’s law, E corrected

Figure 1. Algorithm of Menura’s solver, with its main operations numbered from 0 to 8, as organised in the main file of the code. r and v

are the position and velocity vectors of the macro particles. Together with the magnetic field B, they are the only variables necessary for the

time advancement. The electric field E, the current J, the charge density ρ, as well as the CAM pseudo-moments Λ and Γ, are obtained from

r, v and B.
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(Valentini et al., 2007). Additionally, neglecting the time derivative of the electric field in the Ampere-Maxwell’s law (Darwin’s

hypothesis), one gets the total current through the curl of the magnetic field. This formulation highlights the need for only three

types of variables to be followed through time, namely the magnetic field, and the particles position and velocity, while all

other variables can be reconstructed from these three.

E =−ui×B+
1

en
J×B− 1

en
∇ · pe− ηh∇2J (4)120

The Faraday’s law is used for advancing the magnetic field in time:

∂B

∂t
=−∇×E (5)

The electron pressure is obtained assuming it results from a polytropic process, with an arbitrary index κ, to be chosen by

the user. In all the results presented below, an index of 1 was used, corresponding to an isothermal process.

pe = pe0

(
ne
ne0

)κ
(6)125

Using much less memory than the particles’ variables, the fields can be advanced in time using a smaller time step and

another leap-frog-like approach, as illustrated in Figure 1, step 4 (Matthews, 1994).

Additional spurious high-frequency oscillations are the default behaviour of finite differences schemes. Two main families

of methods are used to filter out these features, the first being an additional step of field smoothing, the second using the direct130

inclusion of a diffusive term in the differential equation of the system, acting as a filter (Maron et al., 2008). For Menura, we

have retained the second approach, implementing a term of hyper-resistivity in the Ohm’s law, introducing the Laplacian of

the total current and the hyper-resistivity coefficient, ηh∇2J. The dissipative scale Ldis of such a term is characterised by the

physical time of the simulation T = nb. iterations× dt and the resistivity, such as Ldis = (ηh ·T )1/4.

135

The stability of hybrid solvers is sensitive to low ion densities. We use a threshold value equal to a few percent of the

background density, 5% in the following examples, threshold below which a node is considered as a vacuum node, and only the

resistive terms of the generalised Ohm’s law of Equation 4 are solved using a higher value of resistivity ηh vacuum (Holmström,

2013). This way, terms proportional to 1/n do not exhibit nonphysical values where the density may get locally very low, due

to the thermal noise of the PIC macro-particle discretisation.140

All variables in the code are normalised using the background magnetic field amplitude B0 and the background plasma

density n0. All variables are then expressed in terms of either these two background values, or equivalently in terms of the
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B0 B0

n0 n0

v0 vA0 =B0/
√
µ0min0

ω0 ωci0 = eB0/mi

x0 di0 = vA0/ωci0

t0 1/ωci0

E0 vA0 ·B0

p0 B2
0/(2µ0)

m0 min0x
3
0

q0 en0x
3
0

Table 1. Background values used to normalise all variables in the solver (cf. Eq. 7).

proton gyrofrequency ωci0 and the Alfven velocity vA0. We define normalised variables ã as obtained by dividing its physical

value by its “background” value:

ã=
a

a0
(7)145

All background values are given in Table 1, and the normalised equations of the solver are given in Appendix A.

3 Physical tests

In this section, the code is tested against well-known, collisionless plasma processes, and their solutions given by the linear

full kinetic solver WHAMP (Rönnmark, 1982). A polytropic index of 1 is used here, with no resistivity. We first explore MHD

scales, simulating Alfvénic and magnetosonic modes. We use a 2-dimensional spatial domain with one preferential dimension150

chosen as x. A sum of six cosine modes in the component of the magnetic field along the x-direction direction are initialised,

corresponding to the first six harmonics of this periodic box. The amplitude of these modes is 0.05 times the background

magnetic field B0, which is taken either along (Alfvén mode) or across (magnetosonic mode) the propagation direction x.

Data are recorded along time and along the main spatial dimension x (saving one cut, given by one single index along the

y-direction), resulting in the 2D field B(x,t). The 2-dimensional Fourier transform of this field is given in Figure 2 (Alfvénic155

fluctuations to the left, magnetosonic to the right). On this (ω,k)-plane, each mode can be identified as a point of higher power,

six points for six initial modes. The solutions given by WHAMP for the same plasma parameters are shown by the solid lines,

and a perfect match is found between the two models. Close to the ion scale k · di0 = 1, WHAMP and Menura display two

different branches that originate from the Alfvén mode, splitting for higher frequencies into the whistler and the ion cyclotron

branches. The magnetosonic modes were also tested using a different polytropic index of 5/3 instead of 1, resulting in a shift160

of the dispersion relation along the ω-axis. Changing the polytropic index in both Menura and WHAMP resulted in the same

agreement.
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ω/k = vmagnetosonic

k// di0

ω/
ω ci

0
WHAMP solutions

100

100

100

10-1

10-1

10-1

10-2 10-2

10-2

k┴ di0

10010-110-2

Figure 2. MHD modes dispersion relations, as solved by WHAMP and Menura. B0 = 1.8 nT, n0 = 1. cm−3, Ti0 = 104 K, Te0 = 105 K.

Left-hand panel: Alfvénic modes, B0 taken along the main spatial dimension. Right-hand panel: Magnetosonic modes, B0 taken perpendic-

ular to the main spatial dimension.

With the MHD scales down to ion inertial scales now validated, we explore the ability of the solver to account for further

ion kinetic phenomena, first with the classical case of the two-stream instability (also known as the ion-beam instability, given

the following configuration). Two Maxwellian ion beams are initialised propagating with opposite velocities along the main165

dimension x. A velocity separation of 15vth is used in order to excite only one unstable mode. The linear kinetic solver

WHAMP is used to identify the expected growth rate associated to the linear phase of the instability, before both beams get

strongly distorted and mixed in phase space during the nonlinear phase of the instability (not captured by WHAMP). During

this linear phase, Menura results in a growing circularly polarised wave, and the amplitude’s growth of the wave is shown in

Figure 3. Both growth rates match perfectly.170

Finally, we push the capacities of the model to the case of the damping of an ion acoustic wave through Landau resonance.

A very high number of macro-particles per grid node is required to resolve this phenomenon, so enough resonant particles take
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0 5 10 15 20 25 30
t ωci

     |E| = a exp(γ t)
γ/ωci = 0.405 (WHAMP)   

mean |E| 
(log10)

10-1

10-2

10-3

10-4

10-5

0 10 20 30 40

t ωci

Averaged normalised
  density (log10)

n = a exp(γ t)
       γ/ωci = -0.288 (WHAMP)

TWO-STREAM INSTABILITY LANDAU DAMPING

Figure 3. Left-hand side, growth during the linear phase of the ion-ion two-stream instability; Right-hand side, Landau damping of an ion

acoustic mode. Two-stream instability: B0 = 1.8 nT, n0 = 1. cm−3, Ti0 = 102 K, Te0 = 103 K. Landau Damping: B0 = 1.8 nT, n0 = 5.

cm−3, Ti0 = 1.5 · 104 K, Te0 = 105 K

part in the interaction with the wave. The amplitude of the initial, single acoustic mode is taken as 0.01 times the background

density, taken along the main spatial dimension of the box. This low amplitude, allowing for comparison with the linear solver,

further increase the need for a high number of particle per node, so the 1% oscillation in number density can be resolved175

by the finite number of particles. For this run, 32768 (215) particles per grid node were used. The decrease in the density

fluctuation through time, spatially averaged, is shown in Figure 3, with again the corresponding solution from WHAMP. A

satisfying agreement is found during the first 6 oscillations, before the noise in the hybrid solver output (likely associated to the

macroparticle thermal noise) takes over. Admittedly, the amount of particle per node necessary to well resolve this phenomenon

is not practical for the global simulations which Menura (together with all global PIC simulations) aims for.180

For the classical tests presented above, spanning over MHD and ion kinetic scales tests, Menura agrees with theoretical and

linear results. In the next section, the simulation of a decaying turbulent cascade provides one final physical validation of the

solver, through all these scales at once.
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4 Step 1: Decaying turbulence

We use Menura to simulate plasma turbulence using a decaying turbulent cascade approach: at initial time t= 0, a sum of185

sine modes with various wave vectors k, spanning over the largest spatial scales of the simulation domain, are added to both

the homogeneous background magnetic field B0 and the ion bulk velocity ui. Particle velocities are initialised according to a

Maxwellian distribution, with a thermal speed equal to one Alfvén speed, and a bulk velocity given by the initial fluctuation.

Without any other forcing later-on, this initial energy cascades, as time advances, towards lower spatial and temporal scales,

forming vortices and reconnecting current sheets (Franci et al., 2015). Using such Alfvénic perturbation is motivated by the190

predominantly Alfvénic nature of the solar wind turbulence measured at 1 au (Bruno and Carbone, 2013).

In this 2-dimensional set-up, B0 is taken along the z-direction, perpendicular to the simulated spatial domain (x,y), whereas

all initial perturbations are defined within the simulation plane. Their amplitude is 0.5 B0, while their wave vectors are taken

with values between kinj, min = 0.01 d−1i0 and kinj, max = 0.1 d−1i0 , so energy is only injected in MHD scales, in the inertial range

(Kiyani et al., 2015). Because we need these perturbation fields to be periodic along both directions, the kx and ky of each195

mode corresponds to harmonics of the simulation box dimensions. Therefore, a finite number of wave vector directions is

initialised. Along these constrained directions, each mode in both fields has two different, random phases. The magnetic field

is initialised such that is it divergence-free.

For this example, the box is chosen to be 500 di0 wide on both dimensions, subdivided by a grid 10002 nodes wide. The

corresponding ∆x is 0.5 di0, and spatial frequencies are resolved over the range [0.0062, 6.2] d−1i0 . The time step is 0.05 ω−1ci0.200

2000 particles per grid node are initialised with a thermal speed of 1 vA. The temperature is isotropic and a plasma beta of

1 is chosen for both the ion macro-particles and the electronic massless fluid. The polytropic index is 1 and a normalised

hyper-resistivity of ηh = 2 ·10−3 is used, corresponding to a dissipative scale at time t= 500 ω−1ci0 of 1. di0, i.e. the scale of the

smallest fluctuations simulated with a node spacing of ∆x= 0.5di0.

At time t= 500 ω−1ci0, the perpendicular (in-plane) fluctuations of the magnetic field have reached the state displayed in205

Figure 4, left-hand panel. Vortices and current sheets give a maximum B⊥/B0 of about 1, a result consistent with solar wind

turbulence observed at 1 au (Bruno and Carbone, 2013). The omni-directional power spectra of both the in-plane magnetic

field fluctuations and the in-plane ion bulk velocity fluctuations are shown in the right-hand panel of the same figure. Omni-

directional spectra are computed as follows, with f̂ the (2D) Fourier transform of f :

Pf (kx,ky) = |f̂ |2 (8)210

These spectra are not further normalised and are given in arbitrary units. We then compute a binned statistics over this

2-dimensional array to sum up its values within the chosen bins of k⊥, which correspond to rings in the (kx,ky)-plane. The
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B0 2.5 nT

n0 1 cm−3

ωci0 0.24 s

di0 228 km

vA0 55 km/s

vthi0 55 km/s

βi0 = βe0 1

B⊥0/B0 0.7
Table 2. Initial parameters of the decaying turbulence run

width of the rings, constant through all scales, is arbitrarily chosen so the resulting 1-dimensional spectrum is well resolved

(not too few bins), and not too noisy (not too many bins).

Pf (k⊥) =
∑

k⊥∈[k⊥0, k⊥0+δk⊥]

|f̂ |2 (9)215

For a vector field such as B⊥ = (Bx,By), the spectrum is computed as the sum of the spectra of each field component:

PB⊥(k⊥) = PBx
(k⊥) +PBy

(k⊥). (10)

The perpendicular magnetic and kinetic energy spectra exhibit power laws over the inertial (MHD) range consistent with

spectral indexes -5/3 and -3/2, respectively, between kinj max = 0.1 d−1i0 and break points around 0.5 d−1i0 . We remind that a

spectral index -5/3 is consistent with the Goldreich-Sridhar strong turbulence phenomenology (Goldreich and Sridhar, 1997)220

that leads to a Kolmogorov-like scaling in the plane perpendicular to the background magnetic field, while a spectral index

-3/2 is consistent with the Iroshnikov-Kraichnan scaling (Kraichnan, 1965). These spectral slopes are themselves consistent

with observations of magnetic and kinetic energy spectra associated with solar wind turbulence (Podesta et al., 2007; Chapman

and Hnat, 2007). For higher wavenumbers, both spectral slopes get much steeper, and after a transition region within [0.5, 1.]

d−1i0 get to a value of about -3.2 and -4.5 when reaching the proton kinetic scales for respectively the perpendicular magnetic225

and kinetic energies, consistent with spectral index found at sub-ion scales by previous authors (Franci et al., 2015; Sahraoui

et al., 2010, e.g.). Additionally, the initial spectra of the magnetic field and bulk velocity perturbations are over-plotted, to

show where the energy is injected in the lower spatial frequencies (using the magnetic field fluctuations), and the level of noise

introduced by the finite number of particles per node used, at high frequencies (using the bulk velocity field).

5 Step 2: Obstacle230

Menura has shown satisfactory results on plasma turbulence, over three orders of magnitude in wavenumbers. We now start the

second phase of the simulation, resuming it at t= 500 ω−1ci0, corresponding to the snapshot studied in the previous section. We
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Figure 4. Decaying turbulence at time 500 ω−1
ci0. The left-hand panel shows the squared in-plane (perpendicular) magnetic field amplitude,

while the right-hand panel presents the omnidirectional power density spectra of the same perpendicular magnetic field as well as the

perpendicular velocity field.

keep all parameters unchanged (including the polytropic index of 1 and the hyper-resistivity of 1.510−3), but add an obstacle

with a relative velocity with regard to the frame used in the first phase, evolving through this developed turbulence. Particles

and fields are advanced with the exact same time and spatial resolutions as previously, so the interaction between this obstacle235

and the already-present turbulence is solved with the same self-consistency as in the first phase, with only one ingredient added:

the obstacle.

5.1 A comet

This obstacle is chosen here to be an intermediate activity comet, meaning that its neutral outgassing rate is typical of an icy

nucleus at a distance of about 2 astronomical units from the Sun. A comet nucleus is from a few to a few tens of kilometers240

large, with a gravitational pull not strong enough to overcome the kinetic energy gained by the molecules during sublimation.

Comprehensive knowledge on this particular orbital phase of comets has recently been generated by the European Rosetta

mission, which orbited its host comet for two years (Glassmeier et al., 2007). The first and foremost interest of such an object

for this study is the size of its plasma environment, which can be evaluated using the gyroradius of water ions in the solar

wind at 2 au. The expected size of the interaction region is about 4 times this gyro-radius (Behar et al., 2018), and with245
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the characteristic physical parameters of Table 2, the estimated size of the interaction region is 480 di0. In other words, the

interaction region spans exactly over the range of spatial scales probed during the first phase of the simulation, including MHD

and ion kinetic scales.

The second interest of a comet is its relatively simple numerical implementation. Considering the spatial resolution of the

simulation, the solid nucleus can be neglected. By also neglecting the gravitational force on molecules as well as any intrinsic250

magnetic field, the obstacle is only made of cometary neutral particles being photo-ionised within the solar wind. Over the

scales of interest for this study, the neutral atmosphere can be modelled by a 1/r2 radial density profile, and considering the

coma to be optically thin, ions are injected in the system with a rate following the same profile. This is the Haser Model (Haser,

1957), and simulating a comet over scales of hundreds of di0 only requires to inject cold cometary ions at each time step with

the rate255

qi(r) = νi ·n0(r) =
νiQ

4πu0r2
, (11)

with r the distance from the comet nucleus of negligible size, νi the ionisation rate of cometary neutral molecules, n0 the

neutral cometary density, Q the neutral outgassing rate, u0 the radial expansion speed of the neutral atmosphere.

One additional simplification is to limit the physico-chemistry of the cometary environment to photo-ionisation, thus ne-

glecting charge exchanges between the solar wind and the coma, as well as electron impact ionization. Both processes can260

significantly increase the ionisation of the neutral coma (Simon Wedlund, Cyril et al., 2019). A global increase or a local

change in the production profile is not expected to impact the initial main goal of the model, which is to simulate the turbulent

nature of the solar wind during its interaction with an obstacle. We note however that the influence of upstream turbulence on

the physico-chemistry of an obstacle is yet another promising prospect for the code.

5.2 Reference frame265

The first phase of the simulation, the decaying turbulence phase, was done in the plasma frame, in which the average ion bulk

velocity is 0. Classically, planetary plasma simulations are done in the planet reference frame: the obstacle is static and the

wind flows through the simulation domain. In this case, a global plasma reference frame is most of the time not defined. In

Menura, we have implemented the second phase of the simulation – the interaction phase – in the exact same frame as the first

phase, which then corresponds to the plasma frame of the upstream solar wind, before interaction. In other words, the turbulent270

solar wind plasma is kept “static”, and the obstacle is moving through this plasma. The reason motivating this choice is to keep

the turbulent solar wind “pristine”, by continuing its resolution over the exact same grid as in phase one. Another motivation

for working in the solar wind reference frame is illustrated in Figure 5, in which we compare the exact same simulation done

in each frame, using a laminar upstream flow. If the macroscopic result remains unchanged between the two frames, we find

strong small scale numerical artifacts propagating upstream of the interaction in the comet reference frame, absent in the solar275

wind reference frame. Small scale oscillations are common in hybrid PIC simulations, and are usually filtered with either

resistivity and/or hyper-resistivity, or with an ad-hoc smoothing method. Note that none of these methods are used in the
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Figure 5. The interaction between a comet and a laminar flow, in the object rest frame (right) and the upstream solar wind reference frame

(left). The magnetic field amplitude is shown.

present example. We demonstrate here the role of the reference frame in the production of one type of small scale oscillations,

and ensure that their influence over the spectral content of upstream turbulence is minimised, already without the implemented

hyper-resistivity.280

To summarise, by keeping the same reference frame during Step 1 and 2, the only effective difference between the two

phases is the addition of sunward moving cometary macroparticles.

Another major advantage of working in the solar wind reference frame is the possibility to simulate magnetic field variations

in all directions, including the relative plasma-object direction. For studying the interaction between Co-rotating Interaction285

Regions and an object for instance, one need to vary the direction of the magnetic field upstream of the object of interest.

In the object reference frame, such a temporal variation of the magnetic field is frozen-in the flow and advected downstream

through the simulation domain by the convective electric field. Considering the ideal Ohm’s law E =−ui×B and Faraday’s

law ∂tB =−∇×E, and considering a plasma flowing along the x-axis ui = uix̂, we get the time evolution of each magnetic

field component as290
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∂tBx = ∂y(uiBy)− ∂z(uiBz)

∂tBy =−∂x(uiBy)

∂tBz = ∂z(uiBz)

The direct implication of this system is that any temporal variation we may force on the upstream Bx cannot have a self-295

consistent influence on the time evolution of the magnetic field elsewhere: only variations forced along magnetic field compo-

nents perpendicular to the flow direction can be advected downstream, through this ideal frozen-in condition. In contrast, when

working in the solar wind reference frame, we can impose spatial fluctuations of the magnetic field (equivalently temporal in

the object frame) in all directions: in this frame these fluctuations are not being advected, it is rather the object itself mov-

ing through the fluctuations. This effectively removes the constraint on flow-aligned variation of the magnetic field, opening300

promising possibilities for the simulation of various solar wind events, such as CIRs or sector boundary crossings.

5.3 Algorithm

By working in the solar wind reference frame, the obstacle is moving within the simulation domain. Eventually, the obstacle

would reach the boundaries of the box, before steady-state is reached. We therefore need to somehow keep the obstacle close

to the centre of the simulation domain. This is done by shifting all particles and fields of n∆x every m iterations, n,m ∈ N,305

as illustrated in Figure 6. Using integers, the shift of the field is simply a side-way copy of themselves without the need of

any interpolation, and the shift of the particles is simply the subtraction of n∆x to their x-coordinate. Field values as well as

particles ending up downstream of the simulation domain are discarded.

This leaves only the injection boundary to be dealt with. There, we simply inject a slice of fields and particles picked from the

output of Step 1, using the right slice index in order to inject the continuous turbulent solution, as shown in Figure 6. These310

slices are n∆x wide.

With idx_it the index of the iteration, the algorithm illustrated in Figure 6 is then:

– Inject cometary ions according to qi(r) (cf. Eq. 11)

– Advance particles and fields (cf. Figure 1)

– If idx_it%m=0315

– Shift particles and fields of -n∆x

– Discard downstream values

– Inject upstream slice idx_slice from Step 1 output

– Increment idx_slice

15



– Increment idx_it320

This approach has one constraint, we cannot fine-tune the relative speed v0 between the wind and the obstacle, which has to

be

v0 =
n

m

∆x

∆t
(12)

in order for the obstacle to come back to its position every m iterations, and therefore not drift up- or downstream of the

simulation domain.325

5.4 CUDA and MPI implementation, performances

The computation done by Menura’s solver (Figure 1) is entirely executed on multiple GPUs (Graphics Processing Units),

written in c++ in conjunction with the CUDA programming model and the MPI standard, which allows to split the problem

and distribute it over multiple cards (i.e. processors). GPUs can run simultaneously thousands of threads, and can therefore

tremendously accelerate such applications. The first implementation of a hybrid-PIC model on such devices was done by330

(Fatemi et al., 2017). However their still limited memory (up to 80GB at the time of writing) is a clear constraint for large

problems, especially for turbulence simulation which requires a large range of spatial scales and a very large number of particles

per grid node. The use of multiple cards becomes then unavoidable, and the communications between them is implemented

using a CUDA-aware version of MPI, the Message Passing Interface. The division of the simulation domain in the current

version of Menura is kept very simple, with equal size rectangular sub-domains distributed along the direction perpendicular335

to the motion of the obstacle: one sub-domain spans the entire domain along the x-axis with its major dimension, as shown

in Figure 6. MPI communications are done for particles after each position advancement, and for fields after each solution

of the Ohm’s law and the Faraday’s law. But since the shift of fields and particles described in the previous section is done

purely along the obstacle motion direction, no MPI communication is needed after the shifts, thanks to the orientation of the

sub-domains.340

Another limitation in using GPUs is the data transfer time between the CPU and the cards. In Menura, all variables are

initialised on the CPU, and are saved from the CPU. Data transfers are then unavoidable, before starting the main loop, and

every time we want to save the current state of the variables. During Step 2 of the simulation, a copy of the outputs of Step 1 is

needed, which effectively doubles the memory needed for Step 2. This copy is kept on the CPU (in the tank object) in order

to make the most out of the GPUs memory, in turn implying that more CPU-GPU communications are needed for this second345

step. Every time we inject a slice of fields and particles upstream of the domain, only this amount of data is copied from the

CPU to the GPUs, using the injector data structure as sketched in Figure 6.
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Figure 6. Injection algorithm for simulating a moving object within the simulation domain.
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5.4.1 Profiling

For Step 1, the decaying turbulence ran 10000 iterations, four NVIDIA V100 GPUs were used with 16GB memory each,350

corresponding to one complete node of the IDRIS cluster Jean Zay. A total of 2 billion particles (500 million per card) were

initialised. The time for the solver on each card reached a bit more than three hours, with a final total coast of about 13 hours

of computation time for this simulation, taking into account all four cards, and the variables initialisation and output. Step 2

was executed on larger V100 32GB cards, providing much more room for the addition of 60000 cometary macro-particles per

iteration.355

During Step 1, 87.3% of the computation time was spent on moments mapping, i.e. steps 0 and 2 in the algorithm of Figure

1, while respectively 2.7% and 0.8% were spent on advancing the particles velocity and position. The computation of the

Ohm’s and Faraday’s laws sums up to 0.5%. 0.9% was utilised for MPI communications of field variables, while only 0.08%

was dedicated for particles MPI communications, due to the limited particle transport happening in Step 1.

91% of the total solver computation time is devoted to particles treatment, with 96% of that part spent on particles moment360

mapping, which might seem a suspiciously large fraction. We note however that such a simulation is characterised by its large

number of particles per node, 2000 in our case. 99.6% of the total allocated memory is devoted to particles. The time spent to

map the particles on the grid is also remarkably larger than the time spent to update their velocity, despite both operations being

based on the same interpolation scheme. However, during the mapping of the particles moments, thousands of particles need

to increment the value at particular memory addresses (corresponding to macro-particle density and flux), whereas during the365

particle velocity advancement, thousands of particles only need to read the value of the same addresses (electric and magnetic

field).

5.4.2 Scalability

An important part of performance testing for parallelised codes is the scalability of the parallelisation. When each parallel

process is serial (i.e. one thread for one process), the strong and weak scaling of the code are classical performance tests,370

with theoretical laws available for comparison (respectively the Amdahl’s and Gustafson’s law). These laws cannot be directly

adapted to the case of devices that already have a highly parallel structure, such as GPUs. We however can approach the

same strong and weak scaling properties of the code to get some valuable insights on the performance of the Menura’s MPI

implementation.

Strong scaling refers to the speed-up (gain of computation time) obtained while simulating the same problem (same grid375

size and same amount of particle per grid node) with a growing number of processes (the load thus decreasing on each GPU).

The upper panel of Figure 7 shows the speed-up obtained using from 1 to 25 processes (i.e. GPUs) solving the same problem:

an homogeneous, fully periodic, 2D plasma box, with no initial disturbance, with total size 1000 x 1000 grid nodes and 1000

particles per grid node. V100 cards with 16 Gb of RAM were used for all runs but one (see below). The speed-up is measured

as sN = tref/tN . t denotes a computation time, counted from the start of the main algorithm loop to its end, thus excluding380

the variables’ initialisation and output. Each run is completed five times and the average value for each type of run is given
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in Figure 7. tref is a reference computation time, tN is the computation time using N processes. The results are given in a

log-log representation, to emphasise the behaviour of the code at low and large number of processes. To simplify the analysis

and contrary to the usual approach followed for serial processes, tref is not chosen as tref = t1, but here as tref = t4 for the

following reason. When using between 4 and 16 GPUs, we achieve the ideal scaling: when doubling the amount of processes,385

we halve the computation time. In other words all {s4, ...,s16} lie along the straight line of slope 1/4 (since tref is taken for four

processes). Points for lower and higher number of processes diverge from this ideal scaling. For low numbers of processes, the

reason for the relative slow-down is the memory usage of the cards. When dividing the problem between two cards, 87% of

their memory is used1, compared to the 47% usage in the case of four processes. This reflects the fact that GPUs only possess

a finite number of parallel threads, though this number surpasses 5000 for this precise hardware. In turn, when an operation390

needs more threads than available, the computation time is increased. On the opposite end of the test, for N > 16, it is the

irreducible operations, such as MPI communications or the kernels calls by the CPU, which become greater than the actual

calculation time by the GPUs, and lead the speed-ups to diverge from the ideal linear evolution.

The weak scaling of the code is measured by increasing the size of the problem while increasing the number of processes,

keeping the same load on single processes. The results are given using the same definition of the speed up, still using the run395

N = 4 for reference. Each process now simulates a 1000 x 125 nodes domain with 1000 particles per node (thus correspond-

ing to the previous N = 8 run). Because of the much smaller differences in computation time, the scales are kept linear. As

previously, s4 is defined as 1. The GPU memory usage is now 27% and the computation time is 260 seconds for the reference

N = 4. Using only 1 process results in a speed-up of 1.04, i.e. the runs completes about 4% faster than the reference run. For

N = 2,3,4, the computation time is equal within a second, resulting in a plateau of values around sN = 1. For N > 4, another400

plateau is reached with a speed-up of 0.96, now computing 4% slower than the reference run, independently of how any GPUs

are used. The interpretation of these three different values (1.04, 1.00 and 0.96) is straightforward. When running only one pro-

cess, no MPI communication between processes is necessary, resulting in a faster run. Increasing the number of processes from

two to four only involves the exact same amount of communications between neighbouring processes, not affecting the other

communications, and the computation time is unchanged. From four to five (and more) processes, communications are now405

done between two or more computation nodes (with one compute node hosting four GPUs in Jean-Zay cluster used here). Com-

municating data between cards within a same node is faster than between cards on different nodes, and therefore an observable

slow-down happens at N = 5. Increasing the number of nodes (from eight cards to sixteen, then to twenty) does not affect the

computation time, for the same reason that increasing the number of cards within one node result in the same computation time.

410

These two tests exhibit a fine behaviour of Menura’s MPI parallelisation, also showing that for this problem size, MPI

communications do not cost more than 4 to 8 % additional computation time, depending on the number of nodes used.

1One larger 32 Gb card was used for the case of N = 1
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Figure 7. Results for the strong (upper panel) and weak (lower panel) scaling properties of Menura. The strong scaling test consists of a

simulation domain of a 1000 x 1000 grid with 1000 particles per grid node, divided into an increasing number of processes (i.e. GPUs).

During the weak scaling test, the load on each GPU is kept constant (1000 x 125 grid, 1000 particles per node) and the number of processes

is increased. The speed-up in both cases is defined as sN = tref/tN with here tref = t4.
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v0 363 km/s (6.66 vA)

Q 5 · 1026 s−1

νi 2 · 10−7 s−1

u0 1 km/s
Table 3. Physical parameters of the model comet.

6 First result

We now focus on the result of Step 2, in which cometary ions were steadily added to the turbulent plasma of Step 1, moving

at a super-Alfvénic and super-sonic speed. Table 3 lists the physical parameters used for Step 2. After 4000 iterations, the total415

number of cometary macro-particles in the simulation domain reaches a constant average value: the comet is fully developed

and has reached an average “steady” state. From this point, we simulate several full injection periods (1500 iterations), looping

over the domain of the injection tank in Figure 6. As an example, Figure 8 displays the state of the system at iteration 6000,

focusing here again on the perpendicular fluctuations of the magnetic field. This time the colour scale is logarithmic, since

magnetic field fluctuations are spanning over a much wider range than previously. While being advected through a dense420

cometary atmosphere, the solar wind magnetic field piles up (augmentation of its amplitude because of the slowing down of

the total plasma bulk velocity) and drapes (deformation of its field lines due to the differential pile-up around the density profile

of the coma), as first theorised by (Alfven, 1957). This general result was always applied to the global, average magnetic field,

and was observed in situ at the various comets visited by space probes.

Without diving very deep in the first results of Menura, we see that the pile-up and the draping of upstream perpendicular425

magnetic field fluctuations also has an important impact on the tail of the comet, with the creation of large amplitude magnetic

field vortices of medium and small size. This phenomenon, together with a deeper exploration of the impact of solar wind

turbulence on the physics of a comet, are gathered in a subsequent publication.

7 Conclusions

This publication introduces a new hybrid PIC plasma solver, Menura, that allows for the first time to investigate the impact of430

a turbulent plasma flow on an obstacle. For this purpose, a new 2-step simulation approach has been developed which consist

of, first, developing a turbulent plasma, and second, injecting it periodically in a box containing an obstacle. The model has

been validated with respect to well-known fluid and kinetic plasma phenomena. Menura has also proven to provide the results

expected at the output of this first step of the model – namely decaying magnetised plasma turbulence.

Until now, all planetary science oriented simulations have ignored all-together the turbulent nature of the solar wind plasma435

flow, in terms of structures and in terms of energy. Menura has been design to fulfill this deficiency and it will now allow

us to explore, for the first time, some fundamental questions that have remained open regarding the impact of the solar wind

on different solar system objects, such as: what happens to turbulent magnetic field structures when it impacts on an obstacle
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Figure 8. Perpendicular magnetic fluctuations during the interaction.
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such as a magnetosphere? How are the properties of a turbulent plasma flow reset as is crosses a shock, such as the solar

wind crossing a planetary bow shock? How does the additional energy stored in the perpendicular magnetic and velocity field440

components impact the large-scale structures and dynamics of planetary magnetospheres?

On top of the study of the interaction between the turbulent solar wind and solar system obstacles, we are confident that

the new modeling framework developed in this work, in particular its 2-step approach might as well be suitable for the study

of energetic solar wind phenomena, namely Co-rotating Interaction Regions and Coronal Mass Ejections, which could be

similarly simulated first in the absence of an obstacle, to then be used as inputs of a second step including obstacles.445

Code availability. The code is open-source and available at https://gitlab.com/etienne.behar/menura, its documentation available at https:

//menura.readthedocs.io/en/latest/

Appendix A: Normalised equations

In Menura’s solver, all variables are normalised using the background magnetic field amplitude B0 and background density

n0, or equivalently using the corresponding proton gyrofrequency ωci0 and Alfvén speed vA0. The background variables450

definitions were previously given in Table 1. Based on these definitions, one can derive the following main equations of the

solver. A normalised variable ã is obtained by dividing this variable by its background value, ã= a/a0, equivalently a= ãa0.

We first consider the Faraday’s law, and using the background parameters definitions of Table ??:

∂B

∂t
=−∇×E (A1)

⇒ ∂B̃B0

∂t̃ t0
=−∇̃/x0× (ẼE0) (A2)455

⇒ ∂B̃B0

∂t̃/ωci0
=−∇̃/di0× (Ẽ vA0B0) (A3)

⇒ ∂B̃

∂t̃
=−∇̃× Ẽ (A4)

with

∇̃=

(
∂

∂x̃
,
∂

∂ỹ

)
(A5)

In other words, the Faraday’s law expressed with normalised variables is unchanged compared to its SI definition. The Ohm’s460

law becomes:

Ẽ =−ũi× B̃+ J̃× B̃+ ∇̃ · p̃e− η̃h∇̃2J̃ (A6)
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with

J̃ = ∇̃× B̃ (A7)

and465

p̃e = βe ñ
κ (A8)

Concerning the gathering of particles moments,

ñ=
∑
spec

wspec

∑
p

W (r̃p) (A9)

with wspec = ñspec/particle-per-nodespec . For the solar wind proton, ñ= 1 and one simply gets wsw = 1/particle-per-node .

W (r̃p) stands for the shape factor, triangular in our case (in 2 spatial dimensions, one macro-particle affects the density and470

current of nine grid nodes, with linear weights).

J̃i =
∑
spec

wspec

∑
p

ũi(r̃p)W (r̃p) (A10)

Appendix B: ∇ ·B and total energy

Starting with the 2-dimensional Faraday’s law (one can ignore the third component, which cannot take part in the divergence

of the magnetic field since in 2 dimensions ∂z• ≡ 0),475

∂tBx = ∂yEz ,

∂tBy =−∂xEz , (B1)

discretised to

∇tBx, i, j = +1/∆t∇yEz, i, j ,

∇tBy, i, j =−1/∆t∇xEz, i, j , (B2)

with the notation ∇t,∇x,∇y representing the discrete temporal and spatial derivatives. The five-point-stencil central finite

difference discretisation of ∂yEz reads480

∇yEz, i, j = 1/(12 ∆x)(Ez, i, j−2− 8Ez, i, j−1 + 8Ez, i, j+1−Ez, i, j+2) . (B3)
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The divergence of the magnetic field increment ∆B is then

div(∆Bi, j) =
1

122 ∆x∆t
(∇x(∇yEz, i, j)−∇y(∇yEz, i, j)) . (B4)

The two consecutive finite differences on the electric field component can be expanded to

div(∆Bi, j) =
1

122 ∆x∆t
(Ez, i−2, j−2− 8Ez, i−2, j−1 + 8Ez, i−2, j+1−Ez, i−2, j+2)485

(−8Ez, i−1, j−2 + 64Ez, i−1, j−1− 64Ez, i−1, j+1 + 8Ez, i−1, j+2)

(8Ez, i+1, j−2− 64Ez, i+1, j−1 + 64Ez, i+1, j+1− 8Ez, i+1, j+2)

(−Ez, i+2, j−2 + 8Ez, i+2, j−1− 8Ez, i+2, j+1 +Ez, i+2, j+2)

(−Ez, i−2, j−2 + 8Ez, i−1, j−2− 8Ez, i+1, j−2 +Ez, i+2, j−2)

(8Ez, i−2, j−1− 64Ez, i−1, j−1 + 64Ez, i+1, j−1− 8Ez, i+2, j−1)490

(−8Ez, i−2, j+1 + 64Ez, i−1, j+1− 64Ez, i+1, j+1 + 8Ez, i+2, j+1)

(Ez, i−2, j+2− 8Ez, i−1, j+2 + 8Ez, i+1, j+2−Ez, i+2, j+2)

in which terms cancel each-other two by two, resulting in a divergence-free magnetic field increment, div(∆Bi, j) = 0. It

follows that only round-off errors will accumulate in the time evolution of div(B). The same argument is classically done

for constrained transport schemes, which use staggered grids to ensure the same property, with the additional complexity of495

secondary variables for the electric and magnetic fields, and fields interpolation/averaging between cell centres and cell edges

and corners. (Tóth, 2000) provides great insights on the constrained transport and finite central differences schemes, also

showing that both conserve the magnetic field divergence.

The time evolution of the divergence of the magnetic field for the decaying turbulence run is shown in Figure B1. We find

that the variance of the divergence grows but remains smaller than 10−11, while the maximum value of the divergence (using500

its absolute value), remains lower than some 4. 10−5, given an initial value of 2. 10−6. This growth is due to accumulating

round-off errors, over tens of thousand of magnetic field pushes. It was tested that for the exact same problem, increasing the

number of time steps increases this accumulated error, despite a finer time resolution.

The total energy, despite a clear decrease over most of the simulation time, is bounded within +1% and −4%. An additional

run was used, which does not include initial perturbation, i.e. an homogeneous plasma. This run shows a nearly perfect energy505

conservation, with departures of the order of 10−5 the total energy at initial time.
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Figure B1. Time evolution of the maximum of the divergence of the magnetic field (upper panel) and of the total energy (middle panel) for

the decaying turbulence run.
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