
1 
 

The Lehtinen-Pirjola Method Modified for Efficient Modelling of 
Geomagnetically Induced Currents in Multiple Voltage Levels of a 
Power Network 

Risto J. Pirjola1, David H. Boteler1, Loughlin Tuck1,2, Santiago Marsal3 
 5 
1 Geomagnetic Laboratory, Natural Resources Canada, Ottawa, Ontario, Canada 
2 Defence Research and Development Canada, Dartmouth, Nova Scotia, Canada 
3 Observatori de l'Ebre (OE), Univ. Ramon Llull - CSIC. Horta Alta, 38. 43520 Roquetes (Spain) 

 

Correspondence email for proofs: david.boteler@canada.ca 10 

Abstract. The need for accurate assessment of the geomagnetic hazard to power systems is driving a requirement to model 

geomagnetically induced currents (GIC) in multiple voltage levels of a power network.  The Lehtinen-Pirjola method for 

modelling GIC is widely used but was developed when the main aim was to model GIC in only the highest voltage level of a 

power network.  Here we present a modification to the Lehtinen-Pirjola (LP) method designed to provide an efficient method 

for modelling GIC in multiple voltage levels.  The LP method calculates the GIC flow to ground from each node. However, 15 

with a network involving multiple voltage levels many of the nodes are ungrounded, i.e. have infinite resistance to ground 

which is numerically inconvenient.  The new modified Lehtinen-Pirjola (LPm) method replaces the earthing impedance matrix 

[Ze] with the corresponding earthing admittance matrix [Ye] in which the ungrounded nodes have zero admittance to ground. 

This is combined with the network admittance matrix [Yn] to give a combined matrix ([Yn]+[Ye]), which is a sparse symmetric 

positive definite matrix allowing efficient techniques, such as Cholesky decomposition, to be used to provide the nodal 20 

voltages. The nodal voltages are then used to calculate the GIC in the transformer windings and the transmission lines of the 

power network. The LPm method with Cholesky decomposition also provides an efficient method for calculating GIC at 

multiple time steps. Finally, the paper shows how software for the LP method can be easily converted to the LPm method and 

provides examples of calculations using the LPm method. 

1 Introduction 25 

Geomagnetic disturbances produce geoelectric fields that drive geomagnetically induced currents (GIC) in power networks. 

These GIC flow along transmission lines and through transformer windings where they can cause half-cycle saturation leading 

to harmonic generation, increased consumption of reactive power and transformer heating. These, in turn, can cause 

misoperation of protective relays and voltage sag and, in extreme cases, damage to transformers and system collapse 

(Kappenman and Albertson, 1990; Bolduc, 2002; Molinski, 2002; Kappenman, 2007; Guillon et al., 2016).  A key requirement 30 
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for understanding the impact of geomagnetic disturbances on power networks is the ability to model the GIC produced in a 

network by specified geoelectric fields.  In 1985, Lehtinen and Pirjola published a landmark paper that provides the first 

description of a stand-alone method for modelling GIC.  The Lehtinen-Pirjola (1985) method (hereafter referred to as the ‘LP 

method’) has been widely used in the geophysics and space weather community and provided the basis for GIC studies in 

many countries (e.g. Pirjola and Lehtinen, 1985; Mäkinen, 1993; Mäkinen et al., 1993; Thomson et al., 2005; Wik et al., 2008; 35 

Viljanen et al., 2012; Torta et al., 2014; 2017; Divett et al., 2018). 

The LP method was designed at a time when mostly only the highest voltage levels of a power network were considered in 

GIC calculations.  This was because the transmission lines at the lower voltage levels have higher resistance so will experience 

smaller GIC values.  However, in a desire to provide more comprehensive modelling of GIC in a power network, many modern 

studies are now looking to model GIC in multiple voltage levels in a power network.  The LP method has been effectively 40 

used for such studies (e.g., Mäkinen, 1993; Mäkinen et al., 1993; Viljanen et al., 2012; Divett et al., 2018); however, using the 

LP method for multiple voltage levels involves many ungrounded nodes, thus having infinite resistance to ground, which is 

numerically inconvenient. Also, the main focus of the LP method was the GIC flow to ground through the transformer primary 

windings, which was the desired output when modelling a single voltage level of a power network.  However, models for 

multiple voltage levels require calculation of the nodal voltages which are then used to calculate the GIC in the transformer 45 

windings (Boteler and Pirjola, 2014).   

In this paper we show how the LP method can easily be modified to efficiently model GIC in multiple voltage levels of a 

power network by converting the LP method to calculate the nodal voltages directly. First we summarise the steps in the LP 

method and then show how these can be modified to give the modified Lehtinen-Pirjola method (hereafter referred to as the 

‘LPm method’). We also show that the LPm method involves inversion of a matrix that is symmetric positive definite allowing 50 

the use of efficient methods including sparse matrix techniques. Then we show how software for GIC calculations using the 

LP method can easily be converted to the LPm method and provide example calculations for the benchmark model introduced 

by Horton et al. (2012), including tables of values at intermediate steps, to help people transitioning their modelling from the 

LP method to the LPm method. 

2 Lehtinen-Pirjola Method  55 

The GIC modelling method derived by Lehtinen and Pirjola (1985), the ‘LP’ method, is produced by starting with Kirchhoff’s 

current law that the net current flowing into a node, k, on branches from other nodes, n, is equal to the current flowing to 

ground from node k (LP equation 8): 

 

𝑖௞ = ෍ 𝑖௡௞

ே

௡ୀଵ

= − ෍ 𝑖௞௡

ே

௡ୀଵ

                                                                                  (1) 60 
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and relates the current in a branch ikn to the driving electromotive force (emf) ekn (if there is one), the voltage difference between 

the nodes at the ends of the line vk and vn, and the admittance of the branch (LP equation 7) ykn:  

 65 

 

𝑖௞௡ = 𝑦௞௡[𝑒௞௡ + (𝑣௞ − 𝑣௡)] .                                                                              (2) 

 

[ ( )]kn kn kn k ni y e v v  
                                                      (2) 

 70 

Substituting (2) into (1) gives (LP equation 9):  

 

𝑖௞ = ෍ 𝑦௞௡[𝑒௞௡ + (𝑣௞ − 𝑣௡)]

ே

௡ୀଵ

 .                                                                           (3) 
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Note that, when considering multiple voltage levels, branches in the network consist of not just transmission lines but also 

transformer windings.  The transmission lines experience the driving emf produced by the magnetic field variations, whereas 

the transformer windings do not. 

The driving emf in each transmission line is represented by an equivalent current source  

             𝑗௞௡ = 𝑒௞௡𝑦௞௡                                                                (4) 80 

 

The equivalent current sources are then summed to give the current source directed into each node (LP equation 13).   

𝐽௞
௘ = − ෍ 𝑗௞௡

ே

௡ୀଵ
௡ஷ௞

 .                                                                    (5) 

 

Making this substitution in (3) gives 85 

𝑖௞ = 𝐽௞
௘ − ෍(𝑣௞ − 𝑣௡)𝑦௞௡

ே

௡ୀଵ
௡ஷ௞

 ,                                                       (6) 
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Thus  

𝑖௞ = 𝐽௞
௘ − 𝑣௞ ෍ 𝑦௞௡

ே

௡ୀଵ
௡ஷ௞

+ ෍ 𝑣௡𝑦௞௡

ே

௡ୀଵ
௡ஷ௞

 ,                                                  (7) 

 

The first summation represents the dependence of current ik on voltage vk so gives diagonal elements of a network admittance 90 

matrix 

𝑌௞௞
௡ = ෍ 𝑦௡௞

ே

௡ୀଵ
௡ஷ௞

 ,                                                                         (8) 

 

The second summation represents the dependence of current ik on all the other nodal voltages vn so gives the off-diagonal 

elements of the (symmetric) network admittance matrix 95 

 

𝑌௞௡
௡ = −𝑦௞௡  ,     𝑛 ≠ 𝑘                                                                    (9) 

 

        n ≠ k                                                        (9) 

 100 

(note that the superscript n in the left hand side is not an index). Combining the above equations gives (LP equation 11): 

 

𝑖௞ = 𝐽௞
௘ − ෍ 𝑣௡𝑌௞௡

௡

ே

௡ୀଵ

 .                                                                                     (10) 

 

1

N
e n

k k n kn
n

i J v Y


 
                                                          (10) 105 

This can be written in matrix form 

 

[𝐼௘] = [𝐽௘] − [𝑌௡][𝑉௡] .                                                                                (11) 

 

e e n nI J Y V              =
                                                  (11) 110 

 

Where the elements of column matrix [Ie] are the currents in. and the elements of column matrix [Vn] are the voltages vn. 

 

n
kn knY y 
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LP make the substitution 

[𝑉௡] = [𝑍௘][𝐼௘] ,                                                                                      (12) 115 

 
n e eV Z I          =

                                                       (12) 

Wwhere [Ze] is the earthing impedance matrix. Thus 

 

𝑣௞ = ෍ 𝑍௞௡
௘ 𝑖௡

ே

௡ୀଵ

                                                                                        (13) 
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v Z i

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                                                          (13) 120 

Substituting (12) into (11) gives a matrix equation involving only the node to ground currents Ie as the unknowns 

 

[𝐼௘] = [𝐽௘] − [𝑌௡][𝑍௘][𝐼௘] .                                                                              (14) 

e e n e eI J Y Z I                  =
                                           (14) 

 125 

Gathering terms in [Ie] gives 

 

([1] + [𝑌௡][𝑍௘])[𝐼௘] = [𝐽௘] .                                                                            (15) 

 

  n e e e1 Y Z I J                                                            (15) 130 

 

where [1] is the unit matrix with size equal to the number of nodes in the model network.  Equation (15) can be solved by 

matrix inversion to give the currents flowing to ground (LP equation 12) 

 

[𝐼௘] = ([1] + [𝑌௡][𝑍௘])ିଵ[𝐽௘] .                                                                          (16) 135 

   1
e n e eI 1 Y Z J


                                                           (16) 

 

The values of [Ie] were the desired output when modelling a single voltage level of a power network. However, if there was 

more than one transformer at a substation (as usually occurs), it was necessary to split the current in proportion to the 

admittances of the transformer windings to determine the fraction of the current that flowed in each transformer winding. 140 
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Now, when modelling the GIC in multiple voltage levels of a power network, many of the nodes are ungrounded. However, 

the LP method needs to specify an earthing impedance for each node.  This is done by adding ‘virtual’ connections to ground 

from each ungrounded node (Mäkinen, 1993; Pirjola, 2005).  These virtual earthing connections have infinite resistance, but 

this cannot be represented in the earthing impedance matrix [Ze], so a high value is used instead. The LP method then gives 145 

the current flow to ground from each node, including small current values through the virtual earthing connections. It is 

necessary to use the [Ie] values and the earthing impedance [Ze] in equation (12) to calculate the nodal voltages [Vn]. The nodal 

voltages are then used to calculate the GIC flow in the branches using equation (2). This is the equation to use for the GIC in 

the transmission lines.  For branches of the network that are transformer windings, there is no driving emf so equation (2) 

reduces: 150 

𝑖௞௡ = 𝑦௞௡(𝑣௞ − 𝑣௡)                                                                  (17) 

 

to give the GIC flow in the transformer windings. 

3 Lehtinen-Pirjola Modified Method 

When modelling GIC in multiple voltage levels of a power network, it is necessary to calculate the nodal voltages before 155 

calculating the GIC in the transmission lines and transformer windings. In the Lehtinen-Pirjola modified (LPm) method the 

matrix equations are modified to provide a solution in terms of the nodal voltages.  This also has the advantage that there is no 

need to add virtual earthing connections to ground from the ungrounded nodes. 

 

To convert the currents flowing to ground [Ie] provided by the LP method to nodal voltages [Vn] start with equation (15) and 160 

make the substitution from equation (12) (Pirjola, 2007) 

 

[𝐼௘] = [𝑍௘]ିଵ[𝑉௡] ,                                                                                      (18) 

1e e nI Z V


                                                                     (18) 

which gives 165 

 

[𝐽௘] = ([𝑍௘]ିଵ + [𝑌௡])[𝑉௡] .                                                                            (19) 

 1e e n nJ Z Y V


               
                                               (19) 

  

The LP method allows for the [Ze] matrix to have off-diagonal elements representing the voltage produced at node i by currents 170 

flowing to ground from other nodes (Pirjola, 2008).  However, if the circuit is set up with a node at the neutral point of each 
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substation, this does not happen (see Boteler and Pirjola, 2014). In this case, [Ze] becomes diagonal with elements equal to the 

earthing resistances ri of the nodes and the inverse of [Ze] is simply the earthing admittance matrix [Ye] given by  

 

𝑌௜௝
௘ = ቐ

𝑦௜ =
1

𝑟௜

         𝑖 = 𝑗

0                   𝑖 ≠ 𝑗

                                                                                (20) 175 

 

1e
ii i

i
Y y r 

                                                                              (20) 

e
ijY = 0

       j≠i 

Then equation (19) can be rewritten as: 

 180 

[𝐽௘] = ([𝑌௘] + [𝑌௡])[𝑉௡] .                                                                            (21) 

 

 e e n nJ Y Y V                                                                   (21) 

 

The voltages of the nodes are then found by taking the inverse of the sum of the admittance matrices and multiplying by the 185 

nodal current sources 

 

[𝑉௡] =  ([𝑌௘] + [𝑌௡])ିଵ[𝐽௘]                                              (22) 

 

These node voltages can then be substituted into (2) and (17) to give the GIC in the transmission lines and the transformer 190 

windings. The GIC flow to ground is simply given from Ohm’s law using the neutral point node voltage and the admittance 

to ground (equation (18) with [Ze]-1 = [Ye]). 

 

The LPm method involves inversion of a matrix ([Ye] + [Yn]) which is symmetric (i.e., Hermitian as the elements are real) and 

positive definite and can thus be solved using a particularly efficient case of lower-upper (LU) decomposition, the Cholesky 195 

decomposition (Press et al., 2007). Note that most of the nodes within the network are unconnected, meaning that [Yn] has 

many zeros. This is also the case with [Ye], so the Cholesky decomposition enables the use of sparse matrix methods (Stott and 

Alsaç, 1987; Press et al, 2007), thus providing an efficient way to model GIC in multiple voltage levels of a power network. 
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4 Calculation of GIC Time Series 

GIC modelling is now being used, not just to assess the GIC for specified electric field values, but also to determine the 200 

variation of GIC throughout a geomagnetic disturbance.  If the network configuration does not change during that time (not 

always the case), then the matrix inversion does not need to be recalculated at every time step.   

If the electric field is assumed to be uniform across the network then linear superposition can be used to calculate the GIC.  (A 

uniform electric field would be produced, e.g., if calculations are made using data from a single magnetic observatory and a 

one-dimensional (1-D) earth conductivity model.)  The GIC modelling can be made for two cases: i) a northward electric field 205 

of 1 V/km, and ii) an eastward electric field of 1 V/km.  For each location k in the network, this modelling gives reference GIC 

values, αk and βk for the northward and eastward electric fields that can be scaled by the actual electric field values at each 

time step and then combined to give the time series of GIC values at that location.  

𝑖௞(𝑡) =  𝛼௞𝐸ே(𝑡) +  𝛽௞  𝐸ா(𝑡)                                                             (23) 

This concept can be extended for using two magnetic observatories (Boteler et al., 2014), but this still requires use of a single 210 

1-D earth conductivity model for the whole network.   

 

In practice there is considerable variability in the earth conductivity structure across a power network.  There are many 

modelling techniques for calculating the electric fields in such cases, ranging from use of multiple 1-D earth models (Marti et 

al., 2014) to use of magnetotelluric transfer functions and 3-D earth conductivity models (Weigel, 2017).  In these cases, the 215 

electric fields across the network can change from place to place and from one time step to the next. This will result in a 

different set of nodal current sources [Je] for each time step. However, for much of the time the network configuration may be 

unchanged, thus once the inverted matrix ([Yn]+[Ye])-1 has been calculated it does not need to be recalculated at each time step 

and can be used with the nodal current source [Je] for each timestep to calculate the nodal voltages [Vn] and hence the time 

series of GIC values. 220 

 

However, for GIC calculations using the LPm method even more efficient time series calculations are possible. The solution 

of a matrix equation, such as equation (21) can be accomplished using LU decomposition, as explained in Press et al. (2007).  

This involves writing the matrix ([Yn]+[Ye]) as a product of two matrices: 

[𝐿]. [𝑈] = ([𝑌௡] + [𝑌௘])                                                                (24) 225 

Where [L] is a lower triangular matrix and [U] is an upper triangular matrix. 

For a positive-definite symmetric matrix, as is obtained with the LPm method, the [L] matrix can be chosen such that the [U] 

matrix is the transpose of [L].  In this case we can write (24) using the Cholesky decomposition 

[𝐿]. [𝐿்] = ([𝑌௡] + [𝑌௘])                                                                (25) 

This Cholesky decomposition to solve the linear set is 230 

([𝑌௡] + [𝑌௘]). [𝑉௡] = ([𝐿]. [𝐿்]). [𝑉௡] = [𝐿]. ([𝐿்]. [𝑉௡]) = [𝐽௘]                 (26) 
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By first solving for the vector P such that 

[𝐿]. [𝑃] = [𝐽௘]         (27) 

and then solving 

[𝐿்]. [𝑉௡] = [𝑃]                                                                         (28) 235 

The advantage is that the solution of a triangular set of equations is quite trivial, as equation (27) can be solved by forward 

substitution and equation (28) can be solved by back substitution. Also, once the Cholesky decomposition has been done, it is 

possible to solve with as many right-hand sides as required, one at a time. Thus the LPm method provides a much faster and 

versatile way of calculating a time series of GIC values. 

 240 

5 Comparison between the LP and LPm Methods   

To illustrate the differences between the LP method and the LPm method consider the circuit for a substation with a two-

winding transformer and three autotransformers as shown in Figure 1. The LP method requires the addition of virtual 

connections to ground from nodes 1 and 2, as explained above.  However, in the LPm method the connection to ground is 

expressed as an admittance value.  For the ungrounded nodes the admittance to ground is zero, which can easily be included 245 

in the earthing admittance matrix without having to add virtual connections to the circuit. 

The steps involved in calculating GIC in multiple voltage levels of a power network using the LP method and the LPm method 

are summarised in Figure 2. In the LPm method, because it involves only admittances and calculates the nodal voltages directly 

there is no need to add virtual connections to ungrounded nodes and then there is no need to convert the currents through the 

virtual connections to nodal voltages. 250 

Figure 2 also shows how easy it is to convert from the LP method to the LPm method.  Many steps in the process are 

the same. The only changes are to set up the earthing admittance matrix [Ye] instead of the earthing impedance matrix 

[Ze]. This removes the need to add virtual connections to ungrounded nodes. Then the combined admittance matrix 

([Yn]+[Ye]) is formed instead of the matrix ([1] +[Yn][Ze]). After that, the matrix inversion is done and multiplied by the 

current source vector [Je], the same as in the LP method (but note the comments about faster inversion methods in the 255 

previous section). An advantage of the LPm method is that the matrix calculation yields the nodal voltages directly 

without the need to obtain them from the earthing currents as required in the LP method.  Finally, the same step is 

performed in the LP and LPm methods to use the nodal voltages to calculate the GIC in the transmission lines and 

transformer windings. 

 260 

6 Example Calculation using the LPm method 

To illustrate the use of the LPm technique we present the calculation of GIC in the benchmark model of Horton et al. (2012) 

shown in Figure 3.  The following tables will also provide values for testing when converting software from the LP method to 

the LPm method. 
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To construct the network admittance matrix [Yn] and the earthing admittance matrix [Ye] it is first necessary to assign node 265 

numbers to the buses and neutral points at each substation. The modelling does not depend on any particular choice of node 

numbers.  Here we use the node number assignment shown in Table 1.  Note that some buses are not included in the model for 

calculating the GIC because they are connected to transformer windings in a delta configuration so there is no path for the GIC 

to flow. Also, there is no neutral point node at substation 7 because there are no transformers at this site as it is just a switching 

station connecting transmission lines.  270 

The network admittance matrix [Yn] is constructed using the transmission line information and transformer information 

presented in Tables II and III of Horton et al. (2012).  In the network admittance matrix [Yn] the values are given by equations 

8 (for the diagonal elements) and 9 (for the off-diagonal elements).  Note that the values are presented for a single phase of the 

power network and it is assumed that the other two phases are identical.  The network admittance matrix values for the 

benchmark model are given in Table 2. 275 

The earthing admittance matrix [Ye] is constructed using the substation grounding resistance, rg, presented in Table I of Horton 

et al. (2012). Note that the GIC from all three phases flow through the substation grounding resistance so the voltage drop here 

is three times that produced by a current from a single phase.  To account for this in a single-phase model the earthing 

admittance is given by  

𝑦௘ =  
ଵ

ଷ௥೒
                                                                   (29) 280 

In the earthing admittance matrix, most nodes are not connected to ground, so their earthing admittance values are zero, and 

there are only non-zero admittance values for the six neutral point nodes.  Earthing admittance matrix values for the benchmark 

model are shown in Table 3. 

Note that the general theory is expressed in terms of impedance and admittance which can have reactive components, but, in 

practice, at the frequencies applicable to GIC the reactive components are negligible, and the network characteristics can be 285 

described as purely resistive or conductive. 

The resulting inversion of the matrix gives ([Yn] + [Ye])-1 shown in Table 4. 

Horton et al. (2012) consider two cases: a northward electric field of 1 V/km and an eastward electric field of 1 V/km. They 

give values for the input induced emf in each line and show the calculated output values both in terms of the nodal (bus) 

voltages and the GIC (A/phase) in the transmission lines and transformer windings. 290 

The voltage source in each transmission line and the equivalent current source, calculated from equation (4), are shown in 

Table 5. These current sources are then summed (equation 5) to give the nodal current sources [Je] shown in Table 6. 

The nodal current sources are then combined with the inverted matrix (Equation 22) to give the nodal voltages shown in Table 

7. For nodes 1-11 these give the bus voltages shown in Table V of Horton et al. (2012). For nodes 12-18, combining the nodal 

voltage and the substation grounding resistance gives the GIC flow to ground for each substation shown in Table VII of Horton 295 

et al., (2012).  
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The nodal voltages substituted into equations (2) and (17) give the GIC values for the transmission lines and transformer 

windings shown in Tables VI and VIII of Horton et al. (2012). 

 

76 Discussion 300 

The above example calculation shows that the LPm method provides GIC values that exactly match those for the benchmark 

model provided by Horton et al. (2012).  The values in Tables 2 to 7 can also be used to check intermediate steps in the software 

used for the LPm calculations.  

Any software developed to model GIC should be able to exactly match the values provided by the Horton et al. (2012) paper.  

The results presented in that paper  are not an average of modelling results nor an approximation to the correct values, but are 305 

the identical values obtained using four different software implementations.  However, initial calculations involving the four 

different software implementations provided similar but slightly different results.  Further investigation showed that the origin 

of the differences was in the way that distances between substations were being calculated in the different implementations. 

Some versions used formulas based on a spherical earth and some used formulas taking account of its non-spherical shape. It 

was then decided to standardise on substation latitudes and longitudes based on the WGS84 ellipsoid model of the Earth which 310 

is used by the global navigation satellite system (GNSS) for geolocation. After this, all the calculations gave exactly the same 

results. To get the source voltage values presented in Table 5 (and hence match the GIC results for the benchmark model) thus 

requires using the formulas presented in the Appendix of Horton et al. (2012) for calculating distances between substations. 

Many people have used the LP method for calculating GIC in the highest voltage level of their power networks.  With the 

increasing requirement to calculate GIC in multiple voltage levels of a power network it is hoped that the new LPm method 315 

described above will provide an easy way for converting existing LP software.  The conversion is a simple process. Just replace 

the earthing impedance matrix [Ze] with the corresponding earthing admittance matrix [Ye], form the new matrix ([Ye] + [Yn]) 

and do the matrix inversion. This directly gives the nodal voltages which are required to calculate the GIC in the transmission 

lines and transformer windings.  There is no need for any “virtual” nodes or connections.  Also, it is more efficient as ([Ye] + 

[Yn]) is symmetric positive definite, so can be solved using Cholesky decomposition, which is a special case of lower-upper 320 

(LU) decomposition (Press et al., 2007) with U = LT (i.e., the upper triangular factor is the transpose of the lower triangular 

factor).  

Power networks, on average, have three transmission lines and one or two transformer windings connected to a bus, so a typical 

row in the admittance matrix has only five or six non-zero elements, independent of the overall network size. Thus for  larger 

networks, where node numbers can be in the thousands, the admittance matrix will have over 99 % of its values equal to zero. 325 

Cholesky factorization takes advantage of this fact by making use of sparse matrix methods (Stott and Alsaç, 1987; Press et 

al, 2007), thus additionally reducing memory usage and computation time. To examine how this affects the GIC modelling, 

we performed calculations for two networks using both the LP and the LPm methods. The networks modelled were 1) the 

benchmark network of Horton et al. (2012), which has 18 nodes, and 2) the nation-wide Spanish Power Grid operated by Red 
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Eléctrica de España (REE), which has 1388 nodes. GIC in the 400 kV part of the REE system was considered by Torta et al. 330 

(2014); for this study we include both the 400 and 220 kV levels of the REE network (see Torta et al., 2021 for reference).  

Tests we did showed that the LP and LPm methods both produce matrices that are sparse, so there is potential for sparse matrix 

techniques to be applicable. Table 8 shows the calculation times and memory usage for GIC calculations using the LP and 

LPm methods. These show that memory usage was drastically reduced when using sparse matrix techniques, with the reduction 

being more significant with the larger REE network. The time for the matrix inversion is significantly affected, as expected, 335 

by the size of the matrix involved. For the Horton network (18x18 matrix) the change to sparse techniques actually increased 

the inversion time. However, the sparse techniques applied to the REE network (1388x1388 matrix) produced an 

approximately order of magnitude reduction in inversion time. This reduction in inversion time was greatest for the LPm 

method which was nearly an order of magnitude faster than the LP method.  

The column ‘Inversion time’ in Table 8 reflects the time required to compute [𝑉௡] from equations (25), (27) and (28), thus 340 

including the Cholesky decomposition and the forward and back substitutions in the LPm method; note, in consequence, that 

it is not strictly an inversion, though we will refer to it as such. Also note that, when referred to LP, this column reflects the 

time to compute [𝐼௘] including the decomposition of  M = [1] + [𝑌௡][𝑍௘]. However, M is not even symmetric in the LP 

method, so the decomposition of M is indeed an upper-lower (UL) factorization. The difference in speed of the inversion 

between the LP and LPm methods is that LPm involves inversion of a symmetric positive-definite matrix which allows the 345 

use of the technique of Cholesky decomposition, that significantly reduces the time of the inversion process (note that LU 

requires the determination of more unknowns). The parameters of the calculations presented in Table 8 are obtained from GIC 

modelling using programs in Matlab. Specific inversion times and memory usage will vary with the programming language 

used, but it is expected that the general results presented here will apply regardless of the programming language used. 

 350 

87 Conclusions 

We have presented a new version of the LP method, modified for efficient modelling of GIC in multiple voltage levels of a 

power system.  In the LPm method the earthing impedance matrix, [Ze], is replaced with an earthing admittance matrix, [Ye] 

that is added to the LP network admittance matrix [Yn] to give a new combined matrix ([Yn] + [Ye]) to be inverted. 

Multiplication of the inverted matrix ([Yn] + [Ye])-1 (or equivalently recycling its Cholesky decomposition) by the nodal current 355 

sources [Je] provides a direct calculation of the nodal voltages [Vn].  These nodal voltages are then used to calculate the GIC 

in transmission lines and transformer windings. 

Guidance is provided for converting software from the LP method to the LPm method and an example calculation using the 

benchmark model of Horton et al. (2012) is presented to provide a set of values for testing GIC calculation software. 

Calculations of GIC using the LPm method involve a matrix that is symmetric positive definite. This enables a solution to be 360 

obtained by Cholesky decomposition, (a specific case of LU decomposition) which is numerically more accurate than 

computing the matrix inversion itself.  The factorization of Cholesky decomposition can always be implemented using sparse 

matrix techniques, speeding up the calculations for large networks. 
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Thus the LPm method provides an efficient method for calculating GIC in multiple voltage levels in a power network that 

provides a valuable tool for assessing the geomagnetic hazard to power systems. 365 
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Figure 1: Substation with a two-winding transformer and three autotransformers  

       and the equivalent circuits for the LP and LPm methods.   

 460 
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 470 
 Figure 2:  Comparison of the steps involved in the LP and LPm methods. 
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 Figure 3: Single-line diagram of the benchmark test case of Horton et al. (2012). 475 
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Table 1. Assignment of node numbers. 

Substation Location Comment 
Node 

 

1 Bus 1 
delta 

connection 
- 

1 Bus 2  1 

     2 Bus 17  2 

2 Bus 18 
delta 

connection 
- 

2 Bus 19 
delta 

connection 
- 

3 Bus 15  3 

3 Bus 16  4 

4 Bus 3  5 

4 Bus 4  6 

5 Bus 5  7 

5 Bus 20  8 

6 Bus 6  9 

6 Bus 7 
delta 

connection 
- 

6 Bus 8 
delta 

connection 
- 

7 Bus 11 
No 

transformers 
10 

8 Bus 12  11 

8 Bus 13 
delta 

connection 
- 

8 Bus 14 
delta 

connection 
- 

1 Neutral 
Blocking 
device 

12 

2 Neutral  13 

3 Neutral  14 

4 Neutral  15 

5 Neutral  16 

6 Neutral  17 

8 Neutral  18 
 480 
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Table 2. Network Admittance Matrix [Yn] for the benchmark model shown in Figure 3. 485 

 

Table 3. Earthing Admittance matrix [Ye] for the benchmark model shown in Figure 3. 
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Table 4. Inverted matrix ([Yn] + [Ye])-1 for the benchmark model shown in Figure 3. 490 

 
 
 Table 5. Voltages in the transmission lines and equivalent current sources for  
     northward and eastward electric fields of 1 V/km. 
 495 

Line From Bus To Bus 
1 V/km Northward Electric Field 1 V/km Eastward Electric Field 

Vsource (V) Jsource (A) Vsource (V) Jsource (A) 

1 2 3 -7.28 -2.07 120.60 34.34 

2 2 17 77.31 21.93 93.16 26.43 

3 15 4 -45.16 -22.74 -129.27 -65.09 

4 17 16 -39.42 -8.45 155.56 33.35 

5 4 5 -93.47 -39.86 131.69 56.16 

6 4 5 -93.47 -39.86 131.69 56.16 

7 5 6 74.56 25.06 190.99 64.20 

8 5 11 171.60 48.90 169.82 48.40 

9 6 11 97.05 67.21 -20.14 -13.95 

10 4 6 -18.92 4.05 321.26 68.85 

11 15 6 -64.08 -21.92 191.11 65.36 

12 15 6 -64.08 -21.92 191.11 65.36 

13 11 12 -6.29 -2.71 160.17 68.92 

14 16 20 -138.64 -34.24 1.49 0.37 

15 17 20 -178.06 -25.66 158.17 22.79 
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Table 6. Nodal current sources for northward and eastward electric fields of 1 V/km. 
 

Node Substation Location 
Nodal current sources (J) 

for ENorth for EEast 

1 1 Bus 2 -19.86 -60.77 

2 2 Bus 17 56.04 -29.71 

3 3 Bus 15 66.57 -65.62 

4 3 Bus 16 25.79 32.98 

5 4 Bus 3 -2.07 34.34 

6 4 Bus 4 61.03 -246.26 

7 5 Bus 5 -104.78 48.12 

8 5 Bus 20 -59.90 23.16 

9 6 Bus 6 -90.03 277.71 

10 7 Bus 11 69.91 -82.87 

11 8 Bus 12 -2.71 68.92 

12 1 Neutral 0.00 0.00 

13 2 Neutral 0.00 0.00 

14 3 Neutral 0.00 0.00 

15 4 Neutral 0.00 0.00 

16 5 Neutral 0.00 0.00 

17 6 Neutral 0.00 0.00 

18 8 Neutral 0.00 0.00 
 500 
Table 7. Nodal voltages produced by northward and eastward electric fields of 1 V/km. 

Node Substation Location 
Node voltages (V) 

for ENorth for EEast 

1 1 Bus 2 -12.39 -190.04 

2 2 Bus 17 25.05 -41.01 

3 3 Bus 15 30.09 -24.39 

4 3 Bus 16 29.37 -22.99 

5 4 Bus 3 20.04 -125.10 

6 4 Bus 4 20.33 -125.97 

7 5 Bus 5 -29.01 -7.26 

8 5 Bus 20 -29.04 -6.13 

9 6 Bus 6 -7.16 44.32 

10 7 Bus 11 60.57 -40.47 

11 8 Bus 12 7.11 15.67 

12 1 Neutral -12.39 -190.04 

13 2 Neutral 23.13 -37.86 

14 3 Neutral 27.97 -21.90 
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15 4 Neutral 19.98 -124.58 

16 5 Neutral -27.91 -6.55 

17 6 Neutral -5.73 35.45 

18 8 Neutral 6.09 13.43 
 
 
Table 8. Properties of the matrices to be inverted using the LP and LPm methods for different power networks,  

       namely Horton et al. (2012) benchmark and REE. 505 
 

Model Method Matrix Size Inversion 
 Process 

Storage 
 (kB) 

Inversion 
Time (μs) 

Horton 
   LP  18 x 18 Regular 2.6 12 

   LPm 18 x 18 Regular 2.6 10 

REE 
   LP 1388 x 1388 Regular 15.4 103 6 104 

   LPm 1388 x 1388 Regular 15.4 103 4 104 

Horton 
   LP 18 x 18 Sparse 1.3 320 

   LPm 18 x 18 Sparse 1.2 170 

REE 
   LP 1388 x 1388 Sparse 110 7 103 

   LPm 1388 x 1388 Sparse 90 9 102 

 
 
 


