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Abstract. The FDTD model of electromagnetic wave propagation in the Earth-ionosphere cavity was developed under 

assumption of axisymmetric system, solving the reduced Maxwell’s equations in a 2D spherical coordinate system. The model 

was validated on different conductivity profiles for the electric and magnetic field components for various locations on Earth 

along the meridian. The characteristic electric and magnetic altitudes, the phase velocity and attenuation rate were calculated. 10 

We compared the results of numerical and analytical calculations and found good agreement between them. The undertaken 

FDTD modeling enables us to analyze the Schumann resonances and the propagation of individual lightning discharges 

occurring at various distances from the receiver. The developed model is particularly useful when analyzing ELF 

measurements. 

Keywords. ELF radio wave propagation, FDTD method, Earth-ionosphere waveguide, Schumann resonances, 15 

decomposition method. 

1 Introduction 

The finite-difference time-domain (FDTD) is a numerical analysis technique based on time-dependent differential Maxwell’s 

equations. It was originally developed for Cartesian coordinate system, but after elaboration of the code for spherical 

coordinates, it found applications in studies of ELF and VLF radio wave propagation in the Earth-ionosphere waveguide 20 

(Holland, 1983; Hayakawa and Otsuyama, 2002; Simpson and Taflove, 2002; Otsuyama et al., 2003; Yang and Pasko, 2005; 

Yu et al., 2012; Samimi et al., 2015). Similar analysis can be performed for Mars and other planets (Soriano et al., 2007; 

Navarro et al., 2007; Yang, et al., 2006; Navarro et al., 2008).  

When a small part of the Earth-ionosphere cavity needs to be analyzed, a local volume can be divided into FDTD grid in 

2D cylindrical (Cummer, 2000; Hu and Cummer, 2006; Marshall, 2012, Qin et al., 2019), or 3D Cartesian coordinate systems 25 

(Araki et al., 2018; Suzuki et al., 2016). It facilitates taking into account some complex inhomogeneities and ionospheric 

anisotropy in the analysis of ELF/VLF radio waves. 
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FDTD modeling in 3D Cartesian coordinates system was used for verification of Wait's and Cooray-Rubinstein analytical 

formulas, describing lightning-radiated electric and magnetic fields for a mixed propagation path (vertically stratified 

conductivity) and for the fractal rough ground surface (Zhang et al., 2012a; Zhang et al., 2012b; Li et al., 2013; Li et al., 2014). 30 

The analysis of propagation of over a mountainous terrain was performed in 2D axial symmetric model (Li et al., 2016), 

which was further developed into FDTD model in 2D spherical axisymmetric coordinate system (Li et al., 2019). In such 

modeling the authors have investigated the effect of the Earth-ionosphere waveguide structure and medium parameters, 

including the effect of the ionospheric cold plasma characteristics, the effect of the Earth curvature, and the propagation effects 

over a mountainous terrain. 35 

A full-wave finite element method was used to calculate electromagnetic fields in a horizontally stratified ionosphere treated 

as a magnetized plasma (Lehtinen and Inan, 2008). The authors have implemented the source currents with arbitrary vertical 

and horizontal distributions. The electromagnetic field was calculated both in the Earth-ionosphere waveguide and in the 

ionosphere as an upward propagating whistler mode wave. This model was used to simulate trans-ionospheric propagation of 

VLF electromagnetic waves from ground-based transmitters up to satellite altitudes (Lehtinen and Inan, 2009). 40 

In a recent paper of Nickolaenko et al. (2021) the propagation of natural wide-band pulsed radio signals in the spherical 

Earth-ionosphere cavity is numerically simulated. Applying the realistic vertical profiles of ionospheric conductivity the 

authors have obtained ELF-VLF propagation parameters  by the full wave solution in form of Riccati differential equation. 

Using the day and night ionosphere models the correspondent parameters were calculated for different source-observer 

distances. 45 

The influence of ionospheric disturbances on the Schumann resonances was analyzed using 3D FDTD model in (Navarro 

et al., 2008). The authors estimated the role of day-night asymmetry, polar non-uniformities associated to solar proton events, 

and X-ray bursts. 

Few other numerical approaches were used for the estimation the parameters of Earth-ionosphere resonator, like the two-

dimensional telegraph equation (TDTE) in a two-dimensional spherical transmission line model of the Earth-ionosphere cavity 50 

(Kulak et al., 2003, Prácser et al., 2019, Bozóki et al., 2019), Transmission Line Matrix (TLM) numerical method in Cartesian 

and spherical coordinate systems (Morente et al., 2003; Toledo-Redondo et al., 2016). 

Besides the Schumann resonances, another important aspect of ELF studies concerns propagation of ELF waves generated 

by individual lightning discharges, including Q-burst phenomena (Ogawa et al., 1967). Their waveforms observed at large 

distance from the source are significantly influenced by the dispersive properties of the Earth-ionosphere waveguide and the 55 

over-the-world propagation. Inverse solutions in such case should take into account full non-uniform solutions of the Maxwell 

equations. This is particularly important for lighting discharges that have a long continuing current phase or are associated 

with Transient Luminous Events (TLE) when they occur at large distance from the receiver. 

The development of an FDTD model was motivated by our ELF systems: World ELF Radiolocation Array (WERA) (Kulak 

et al., 2014) and a new European ELF radiolocation system (EERS) (Mlynarczyk et al., 2018), which are operating in the 60 

Extremely Low Frequency (ELF) range, as well as for possible stations on Mars. 
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In this paper, we present an FDTD uniform model in 2D spherical coordinates and introduce new approach for validation 

the FDTD models by introducing computation of complex altitudes of the Earth-ionosphere waveguide, which allows us to 

compare numerical results with two-scale-height analytical solutions. We also infer the resonance frequencies of Earth-

ionosphere waveguide for various conductivity profiles using the decomposition method (Kulak et al., 2006). 65 

2 FDTD model 

We have created the FDTD model following the ideas, which were originally proposed in (Holland, 1983) and developed in 

further studies (Hayakawa and Otsuyama, 2002; Otsuyama et al., 2003; Yang and Pasko, 2005; Navarro et al., 2007; Yang, et 

al., 2006; Navarro et al., 2008). We chose a spherical coordinate system to be able to study the wave’s propagation in the 

Earth-ionosphere cavity and analyze the Schumann resonances. 70 

Since in the present work we did not intended to study the azimuthal dependence of propagation parameters, we reduced a 

3D system of Maxwell’s equations to a 2D axisymmetric system. It allowed us to significantly decrease the required 

computational power and enabled longer simulation times, which leads to a better frequency resolution (up to df = 0.01 Hz). 

2.1 Update equations 

In the case of spherical system, assuming no dependence on   coordinate, the system of six Maxwell’s equations in 3D 75 

spherical coordinates ( r ,  ,  ) can be reduced to 2D spherical system ( r ,  ) with tree equations for rE , E , and H  field 

components (Holland, 1983; Inan and Marshall, 2011) 
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where )(= r is the conductivity profile of Earth-ionosphere cavity, 0  and 0  are the vacuum permittivity and 

permeability respectively. 

These equations were discretized using central-difference approximations to the space and time partial derivatives. The 85 

resulting finite-difference equations are solved in a leapfrog manner: the electric field vector components in a volume of space 

are solved at a given instant in time; then the magnetic field vector components in the same spatial volume are solved at the  

next instant in time and the process is repeated over and over again until the desired transient or steady-state electromagnetic 
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field behaviour is fully evolved (Inan and Marshall, 2011). So the update equations for rE , E  and H  are the following 

(Holland, 1983) 90 
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where t  is the time step, r  and   are the sizes of grid cell in r  and   coordinates respectively, riRri +0= , 

riRri + 1/2)(=1/2 ,  jj = ,   1/2)(=1/2 jj , 0R  is the mean Earth’s radius. Superscript n  signifies that the 

quantities are to be evaluated at time tnt = , and i , j  represent the point ( rir = ,  j= ) in the spherical grid. The half 100 

time steps indicate that the electric and magnetic fields are calculated alternately. 

The update equation for rE  cannot be applied for poles (where 0= and  = ) because of sin  in denominator. To solve 

this singularity problem the Holland’s approach was used in Holland (1983). Namely, for the poles the integral form of the 

curl equation with a small contour around the poles was applied, which leads to new update equations for poles without 

singularities. After that, the update equation for 
0=  takes the form (Holland, 1983): 105 
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And for 180= :  
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where /2=1/2   ,  
−− 1/2)(=1/2 NN , N  is the number of grid cells in   direction. 

2.2 Mesh 

The size of grid cell (in r  and   directions) is defined by the desired range of frequencies, which are going to be analyzed. 115 

For the present analysis we used 1=r  km and 
0.1= , which lets us analyze frequencies up to 1 kHz. The ground was 

modeled as a perfect electric conductor. Also, the upper boundary maxR  for the model is a perfect conductor but it was placed 

at high enough altitude to make sure there is no reflection of the waves from this boundary. 

The total simulation time is defined by the desired frequency resolution of FFT ( maxtf 1/=  Hz). The time step is defined 

by the stability Courant’s criterion 
22 )()(1/ −− + arct , where c  is the speed of light and a is the Earth radius (Inan 120 

and Marshall, 2011). In order to get sufficient frequency resolution (in our case it’s 0.01 Hz, to be able to study the differences 

between different models) we have conducted the FDTD simulation up to 100 s. 

2.3 Source 

In order to analyze the propagation of electromagnetic waves originating from lightning discharges, one has to use the source 

model with similar characteristic to real lightning discharge. We used the time profile of lightning discharge proposed in 125 

(Kulak et al., 2010; Rakov, 2007), which has a flat spectrum in a wide frequency range. But taking into account the restrictions 

connected with FDTD computational grid, we had to modify the source – the highest frequency (or smallest wavelength) is 

defined by the cell size, and according to the generally accepted rule the smallest wavelength should be at least 10-20 times 
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larger than the cell size. Therefore, the source has to be filtered with a loss-pass filter in order to remove frequency components 

that does not fit the size of computational cell.  130 

Also, it should be noted, that if the source contains the direct current (DC) in its spectrum, it can introduce artifacts, which 

are not physical (Li et al., 2013). Therefore, additional filtering has to be used for the lowest frequencies by a high-pass filter. 

For such filtering we have used a 5th order Butterworth lowpass filter with cutoff frequency of 300 Hz, and a 3th order 

Butterworth highpass filter with cutoff frequency of 2 Hz. The final spectrum of this modified source is almost flat in the range 

5–100 Hz but decreases rapidly for 3<f  Hz and 1000>f  Hz. 135 

We placed the source in the FDTD grid at the pole ( 0= ) in radial direction in nodes with i = 0 – 6, which corresponds 

to the source length L = 6 km. Also, for the implementation of the source into the FDTD grid we took into account  the lightning 

stroke speed, and for our analysis we used v=108 m/s (Rakov, 2007). We assumed a cloud-to-ground (CG) discharge and 

implemented it by the time delay between adjacent nodes in the source. 

3. Validation of the model 140 

The main purpose of the current work is the analysis of resonance phenomenon in the Earth-ionosphere cavity. In order to 

validate the developed FDTD model, we analyzed several configurations of spherical waveguide with known analytical 

solutions and compared it with our FDTD results. We compared the resonance frequencies for them in relative and absolute 

units.  

 145 

3.1 Lossless spherical waveguide 

The first model for testing was a lossless spherical waveguide with perfect electric conductors at the ground and the upper 

boundary. The distance between the conductors was set to h = 74 km. The precise theoretical resonance frequencies for such 

waveguide for a given height were presented by the equation ahnnacfn /11)()/2(= −+ , where c is the speed of light, a 

is the Earth radius, n is the mode of resonance frequency (Bliokh et al., 1977). A comparison of analytical and numerical 150 

results for such model is presented in Table 1. 

Table 1 

Comparison of resonance frequencies obtained analytically and numerically for a lossless spherical waveguide. 

 

Mode Analytical [Hz] FDTD [Hz] Abs.Err [Hz] Rel.Err [%] 

1f  10.530 10.525 0.005 0.04 

2f  18.238 18.250 0.012 0.07 

3f  25.792 25.795 0.003 0.01 
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 155 

 

3.2 Spherical waveguide with a conducting layer 

A more complicated model for testing had a perfect conductor at the ground and a constant conductivity 6104 −  S/m above 

70 km. The analytical solutions for this model were obtained by Kulak and Mlynarczyk (2013). A comparison of analytical 

and numerical results for such model is presented in Table 2. 160 

 

Table 2 

Comparison of resonance frequencies obtained analytically and numerically  

for a spherical waveguide with a conducting layer above 70 km 

 165 

Mode Analytical [Hz] FDTD [Hz] Abs.Err [Hz] Rel.Err [%] 

1f  8.01 8.00 0.01 0.13 

2f  14.91 14.83 0.08 0.56 

3f  23.69 21.71 0.02 0.09 

 

3.3 Two-layered spherical waveguide 

The third model for testing was a two-layered model with a perfect conductor at the ground, a constant conductivity 
7105 −  

S/m at altitudes between 70 and 110 km, and a constant conductivity 
5105 −  S/m above 110 km. The analytical results for 

such model can be obtained from Kulak et al. (2013), which deal with multi-layer waveguides. A comparison of analytical and 170 

numerical results for this model is presented in Table 3. 

 

Table 3 

Comparison of resonance frequencies obtained analytically and numerically for a two-layered spherical waveguide. 

 175 

Mode Analytical [Hz] FDTD [Hz] Abs.Err [Hz] Rel.Err [%] 

1f  8.007 8.003 0.004 0.05 

2f  14.084 14.09 0.006 0.04 

3f  20.078 20.07 0.008 0.04 

 

 



8 

 

 

(a)                                                                          (b)                                                                             (c)      

Figure 1. The FDTD spectrum for spherical waveguide with lossless perfect cavity (a), one conducting layer (b) and two layers (c) for electric component at 180 

900 and magnetic component at 1800. 

4. Application of a realistic atmospheric conductivity profile 

The next validation of our FDTD model was done for a realistic atmospheric conductivity profile (Kudintseva et al., 2016; 

Nickolaenko et al., 2016). We did not take into account the influence of Earth magnetic field. The resulting anisotropy of the 

conductivity has little influence in the analyzed frequency range (i.e., 0-100 Hz). As it was shown in Yu et al. (2012), the 185 

anisotropy has a more significant influence at higher frequencies. 
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Figure 2. A realistic conductivity profile up to 200 km obtained by combining the profile  

from Kudintseva et al. (2016) (red part) and an IRI profile (blue part). 190 

 

For the lower part of atmosphere (0-100 km) we used a conductivity profile recently proposed in Kudintseva et al. (2016). 

Since the upper boundary of this profile has the conductivity much below 1 S/m, which is not enough to attenuate the ELF 

waves, reflections in FDTD grid would occur from the PEC at its upper boundary. To avoid reflections and let the waves 

attenuate gradually at high altitudes we extended this profile up to 200 km using the IRI model. We chose it in such a way that 195 

the combined profile is smooth (Figure 2). The required IRI profile was found on January 22, 2006, at 6:00 UT for the location 

typical for mid-latitudes (49N, 23E). 
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 200 

Figure 3. The results of the FDTD analysis are shown, that were obtained using the realistic conductivity profile described in Figure 2. The solutions for 

electric component Er (upper panels) and magnetic component Hp (bottom panels) are shown in time domain (left panels) and in frequency domain (right 

panels). Each plot contains the results for two probe position (600 and 1200). 

 

4.1 Characteristic electric and magnetic altitudes 205 

To be able to compare the numerical results with the analytical solutions, we have extracted the complex characteristic 

electric and magnetic altitudes from the FDTD model. The corresponding altitudes can be extracted using their definition 

(Mushtak and Williams, 2002; Kirillov, 1993): 
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where N  is number of radial nodes, i

rE  and iH  are the complex field values at the radial node i  for a given frequency, and 

0

rE , 0

H  are the values of these fields at the ground level. 215 
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Figure 4. Real and imaginary parts of characteristic electric and magnetic altitudes obtained analytically (denoted by “A”) and from the FDTD model 

(denoted by “N”). 220 

 

The complex electric altitude can also be expressed using the conductivity profile by the analytical equation in a normalized 

form (Mushtak and Williams, 2002) 
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0 e

e
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            (11) 225 

 

where 
ee  /=  and the characteristic conductivity value for electric altitude is 0= 

e , f 2= . 

Assuming a similar dependence for complex magnetic altitude and taking into account that the characteristic conductivity 

value for magnetic altitude is (Greifinger and Greifinger, 1978) 

 230 
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where the scale height )d/d)/((=)( rrr  , we can write a similar equation for the complex magnetic altitude 
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   (12) 235 

 

where 

mm  /= . We compared the characteristic electric and magnetic altitudes calculated analytically from equations 

(11) and (12) with the FDTD results, calculated from equations (9) and (10). The results are presented in Figure 4. 
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4.2 Propagation parameters 240 

We calculated the phase velocity phV  and the attenuation rate  using two different methods – numerical and analytical. 

Analytically the propagation parameters can be calculated using conductivity profile and electric and magnetic altitudes given 

by equations (11) and (12), through the following relationship (Kulak and Mlynarczyk, 2011) 

 

,
Re

=
S

c
Vph    (13) 245 

,Im= S
c


   (14) 

 

where 
em hhS /=2 . 

 

In case of numerical calculations those parameters were obtained by two approaches: a) similarly to analytical as described 250 

above but using electric and magnetic altitudes from FDTD model by equations (9), (10), and b) directly from the spectra of 

electric and magnetic field components. Assuming that in our coordinate system the wave propagates in the  direction the 

following relationship can be written in the frequency domain  
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where the ratio of magnetic field complex amplitudes H (f) are calculated for two probes “1” and “2” which are located at 

distances 1 and 2 from the source respectively. In this equation the propagation constant  i= + , where  is the 

attenuation rate (in units Np/m) and   is the phase constant, so the phase velocity is /=phV . For further convenient usage 

we convert the units of attenuation rate to dB/Mm. Similar relationship to (15) but for electric field components rE (f) can be 260 

written as well. 
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Figure 5. The attenuation rate and phase velocity that was calculated analytically and numerically. Using numerical FDTD calculations those parameters 265 

were obtained by two approaches: a) using electric and magnetic altitudes from FDTD by equations (9), (10), and b) directly from the spectra electric and 

magnetic following the equation (15), where we used probes located at 800 and 900. 

 

We should note that equation (15) for rE  and 
H  spectra calculated in closed cavity gives non monotonic behavior of 

propagation parameters. This is caused by superposition of wave attenuation along meridian and different amplitudes of the 270 

Schumann resonances for different source-observer distance. One of possible solutions for removing the influence of 

Schumann resonances is to implement a PML along   direction. However, we solved this problem in a different way, 

transforming the Maxwell equations at angle 
090  from spherical coordinates to plane equations, changing the behavior of 

equations from “close” to “open”. In this case the waves are unable to propagate around the Earth and therefore the Schumann 

resonance does not occur. The calculated propagation parameters from all the methods listed above are presented in Figure 5. 275 

4.3 Spectral decomposition method 

As an additional validation we applied the spectral decomposition technique to Schumann resonance power spectra. Figure 

6 presents the resonance frequencies obtained from the spectra measured at different distance from the source, and the 

decomposed frequencies that do not depend on the source-observer distance. Following the decomposition algorithm (Kulak 

et al., 2006; Dyrda et al., 2014) the spectrum is approximated by the function 280 
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where W(f) is the signal power spectrum, s is the white noise component, 𝑧/𝑓𝑚 is the color noise term, 𝑝𝑘  is the power 

parameter of the k-th resonance peak, 𝑒𝑘  is the peak asymmetry parameter, 𝑓𝑘  is the resonance frequency, and 𝑔𝑘  is the 285 

resonant mode half-width parameter. Fitting this function to the FDTD spectra allows us to extract the resonance frequencies 
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𝑓𝑘 of the cavity, which are not equal to Schumann resonance frequencies. The Schumann resonance frequencies obtained from 

the spectra depend on the distance from the source and represent the superposition of standing and traveling waves (Kulak et 

al., 2006). To analyze the standing waves separately and reveal the properties of the resonant cavity we are using the spectral 

decomposition method described in (Kulak et al., 2006; Dyrda et al., 2015). After applying this method, the resonance 290 

frequencies become independent of the source-observer distance (see details in Kulak et al. (2006) and Dyrda et al. (2015)). 

The decomposition method shows that the solutions for the electric field are symmetric at 180=  because the traveling 

waves cancel each other and only the standing waves remain. Therefore, the resonant peaks measured from the spectrum at 

180=  for the electric field component ( 180

rE ) represent the resonance frequency of the cavity and they are in agreement 

with the decomposed frequencies. 295 

 

 

Figure 6. The Schumann resonance frequencies of first three modes obtained at different source-observer distances and the resonance frequencies of the 

cavity obtained by the decomposition method (Kulak et al., 2006). 

 300 

4.4 Resonance frequencies of the Earth-ionosphere cavity 

The resonance frequencies of the Earth-ionosphere cavity for a given conductivity profile can be calculated by different 

approaches and the consistency between them can be considered as an additional validation of the model. We have considered 

the followings ways to calculate the resonant frequencies: 
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 305 

1). Analytically using the conductivity profile. The resonance frequencies in this approach are calculated by solving the 

following equation (Mushtak and Williams, 2002; Galejs, 1972) 
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 310 

where em hhS /=2  depending on the characteristic complex altitudes, which are discussed in Section 4.1; 

2). Numerically from FDTD model using equation (17). We denote these resonant frequencies by n

hf ; 

3). Using FDTD spectra for 180

rE  (see Section 4.3 for details). We denote these frequencies by n

rEf ; 

4). Using spectral decomposition method (see Section 4.3 for description). We denote these resonant frequencies by n

df . 

 315 

The obtained resonance frequencies are presented in Table 4. These frequencies we compared with the analytical results 

and the absolute and relative differences are presented in the corresponding columns. 

 

Table 4 

Resonance frequencies for the conductivity profile shown in Figure 2 calculated by different approaches described in 320 

Section 4, and the relative error obtained by comparison with the analytically obtained resonance frequency. 

 

 

5. Discussion 

In this study, we used new methods for validation of numerical simulation:  325 

Mode 
n

cf  [Hz] 
n

hf  [Hz] 
n

rEf  [Hz] n

df  [Hz] hf  [Hz / %] 
rEf  [Hz/%] 

df  [Hz %] 

1f  7.711 7.705 7.783 7.707 0.00565 / 0.073 0.072 / 0.936 0.004 / 0.052 

2f  13.877 13.909 13.998 13.892 0.0324 / 0.234 0.121 / 0.872 0.015 / 0.105 

3f  19.968 20.070 20.140 20.017 0.102 / 0.511 0.172 / 0.861 0.049 / 0.247 

4f  26.049 26.246 26.275 26.160 0.196 / 0.753 0.226 / 0.866 0.111 / 0.425 

5f  32.140 32.448 32.409 32.351 0.308 / 0.960 0.269 / 0.838 0.211 / 0.658 
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1). We compared the complex electric and magnetic altitudes of the Earth-ionosphere waveguide, referring to two-

dimensional formalism of electromagnetic wave propagation in the Earth-ionosphere cavity. The two complex altitudes were 

calculated numerically directly from their definitions (9) and (10), making use of radial field solutions E(r) and H(r). These 

altitudes were directly compared with the altitudes obtained with analytical formulas (11) and (12) for the same conductivity 

profile of the atmosphere. This allowed us to fully validate the simulation results.  330 

2). We determined the resonance frequencies of the cavity using the decomposition of power spectra described by equation 

(16). The resonance frequencies cannot be directly determined from the spectra obtained using FDTD, because the field 

generated by the source in each point of the cavity is a superposition of travelling waves propagating directly from the source 

and the resonance field resulting from the interference of waves propagating around the world. The resulting Schumann 

resonance frequencies depend on the source-observer distance (Kulak et al., 2006). Close to the source, where the amplitudes 335 

of the travelling waves are significant, the resonance frequencies differ by several percent from the Schumann resonance 

frequencies obtained by FDTD. With the use of the decomposition method we determined the intrinsic resonance frequencies 

of the cavity, which are the same at each location, independently from the distance to the source. This enabled us to compare 

the resonance frequencies obtained from the numerical simulation with the frequencies determined directly from analytical 

formula (9). This method should be recommended as a reference for validation of numerical models.  340 

3). We determined the propagation parameters of the Earth-ionosphere waveguide using the FDTD results in two different 

points of the great circle. Equation (15) that we used allows us to determine the phase velocity and the attenuation rate of the 

Earth-ionosphere cavity. We compared them with the results obtained from analytical formulas (13) and (14). 

6. Summary and conclusions 

In this paper, we analyzed the solutions of Maxwell's equations obtained by the FDTD method for an axisymmetric uniform 345 

Earth-ionosphere cavity. We analyzed the propagation of radio waves generated by a short current impulse.  

We have constructed an FDTD model in axisymmetric spherical coordinate system with the source implemented at the pole. 

We took into account the finite speed of lightning discharge and implemented the time delay between adjacent nodes in the 

source.  

We validated the model thoroughly, comparing the resonance frequencies, propagation parameters and electric and 350 

magnetic characteristic altitudes. Since the conductivity profile of the atmosphere has a significant influence on radio wave 

propagation and resonance frequencies, we validated our model for various conductivity profiles. 

We paid a close attention to the verification of accuracy of the FDTD computations and used a new approach for that 

purpose. It is based on 2D formalism of wave propagation in the Earth-ionosphere cavity and it allowed us to compare the 

numerical and the analytical solutions. In this approach, the propagation parameters of the Earth-ionosphere waveguide are 355 

defined using the electric and magnetic altitudes. These altitudes can be calculated directly, when the vertical conductivity 

profile of the atmosphere is known.  
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The obtained analytical solutions were used as reference and compared with the numerical results. First, we compared the 

solutions for three cases: a perfect cavity, a cavity formed by a perfect ground and a homogenous conducing layer, and a cavity 

formed by a perfect ground and two-layered upper boundary of the waveguide. As a measure of error between the models, we 360 

took the difference between the first three resonance frequencies. The analytical and numerical solutions were in agreement 

(Tables 1, 2, 3). Next, we compared the results for a continuous conductivity profile. We built a realistic conductivity model, 

which lower part was based on a recently proposed conductivity profile and the upper part was based on an IRI model. We 

obtained a good agreement between the resonance frequencies of the cavity and the observed Schumann resonance frequencies 

(Table 4).  365 

Using our FDTD model, we also calculated the spectral dependence of the phase velocity and the attenuation rate. We 

showed that the analytical and numerical models are in agreement.  

The presented model can be used for studying the propagation of ELF electromagnetic waves generated by lighting 

discharges of various types with the round-the-world propagation taken into account. 

Acknowledgments 370 

The numerical computations were done using the PL-Grid infrastructure. The present work was supported by the Polish 

National Science Center under the grants: 2016/22/E/ST9/00061 (VM), 2015/19/B/ST9/01710 (AK), 2015/19/B/ST10/01055 

(JM). 

Author contributions 

AK formulated the concept of the current research. VM wrote the FDTD code, the python scripts for the post-processing 375 

and visualization, contributed to the development of the analytical model used for the validation of FDTD results in Section 4 

and prepared the initial version of the manuscript. JM calculated the analytical results for the validation in Section 3 and 

participated in the preparation of the scripts for the post-processing of FDTD results. All authors participated in the 

interpretation of the results and contributed to the preparation of the final version of the manuscript. 

References 380 

Araki, S., Nasu, Y., Baba, Y., Rakov, V.A., Saito, M., Miki, T.: 3-D Finite Difference Time Domain Simulation of Lightning 

Strikes to the 634-m Tokyo Skytree, Geophys. Res. Letters, 45, 9267, 2018. 

Bliokh, P. V., Galyuk, Yu. P., Hunninen, E. M., Nickolaenko, A. P. and Rabinovich, L. M.: On resonance phenomena in the 

Earth-ionosphere cavity, Radiofizika, XX(4), 501, (in Russian), 1977. 



18 

 

Bozóki, T., Prácser, E., Sátori, G., Dálya, G., Kapás, K., and Takátsy, J.: Modeling Schumann resonances with schupy. Journal 385 

of Atmospheric and Solar-Terrestrial Physics, 196, 2019. 

Cummer, S. A.: Modeling electromagnetic propagation in the Earth-ionosphere waveguide, IEEE Trans. Antennas Propag., v. 

48, p. 1420, 2000.  

Dyrda, D., Kulak, A., Mlynarczyk, J., Ostrowski, M., Kubisz, J., Michalec, A. and Nieckarz, Z.: Application of the Schumann 

resonance spectral decomposition in characterizing the main African thunderstorm center, J. Geophys. Res. Atmospheres, 119, 390 

13,338–13,349, 2014. 

Dyrda, M., Kulak, A., Mlynarczyk, J. and Ostrowski, M.: Novel analysis of a sudden ionospheric disturbance using Schumann 

resonance measurements, J. Geophys. Res. Space Physics, 120, 2015. 

Galejs, J.: Terrestrial Propagation of Long Electromagnetic Waves, Pergamon, New York, 1972. 

Greifinger, C. and Greifinger, P.: Approximate method determining eigenvalues earth-ionosphere for ELF in the waveguide, 395 

Radio Sci., vol. 13, no. 5, pp. 831–837, 1978. 

Hayakawa, M. and Otsuyama, T.: FDTD analysis of ELF wave propagation in inhomogeneous subionospheric waveguide 

models, Appl. Computational Electromagnetics Soc. J., 17, 239-244, 2002. 

Holland, R.: THREDS: A finite-difference time-domain EMP code in 3D spherical coordinates, IEEE Trans. Nuclear Science, 

NS-30(6), 4592-4595, 1983. 400 

Hu, W. and Cummer, S. A.: An FDTD model for low and high altitude lightning-generated EM fields, IEEE Trans. Antennas 

Propag., v. 54, p. 1513-1522, 2006. 

Inan, U. S.  and Marshall, R. A.: Numerical Electromagnetics: The FDTD Method, Cambridge University Press, 2011. 

Kirillov, V. V.: Parameters of the earth-ionosphere waveguide at ELF, (in Russian) Probl. Diffr. Wave Propagat., vol. 25, no. 

35, 1993. 405 

Kudintseva, I. G., Nickolaenko, A. P., Rycroft, M. J., Odzimek, A.: AC and DC global electric circuit properties and the height 

profile of atmospheric conductivity, Annals of Geophysics, 59, 5, 2016. 

Kulak, A., Zieba, S., Micek, S., Nieckarz, Z.: Solar variations in extremely low frequency propagation parameters: 1. A two-

dimensional telegraph equation (TDTE) model of ELF propagation and fundamental parameters of Schumann resonances, J. 

Geophys. Res. Space Physics, Vol. 108, Issue A7, p. 1270, 2003. 410 

Kulak, A., Mlynarczyk, J., Zieba, S., Micek, S. and Nieckarz, Z.: Studies of ELF propagation in the spherical shell cavity using 

a field decomposition method based on asymmetry of Schumann resonance curves, J. Geophys. Res., vol. 111, pp. A10304, 

2006. 

Kulak, A., Nieckarz, Z. and Zieba, S.: Analytical description of ELF transients produced by cloud to ground lightning 

discharges, J. Geophys. Res., 115, D19104, 2010. 415 

Kulak, A., Mlynarczyk, J., Kozakiewicz, J.: An analytical model of ELF radiowave propagation in ground-ionosphere 

waveguides with a multilayered ground, IEEE Trans. Antennas Propag., 61(9), 4803–4809, 2013. 



19 

 

Kulak, A., Kubisz, J., Klucjasz, S., Michalec, A., Mlynarczyk, J., Nieckarz, Z., Ostrowski, M., Zieba, S.: Extremely low 

frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis, Radio Sci., Vol. 49, 

Issue 6, pp. 361-370, 2014. 420 

Kulak, A. and Mlynarczyk, J.: A new technique for reconstruction of the current moment waveform related to a gigantic jet 

from the magnetic field component recorded by an ELF station, Radio Sci., vol. 46, pp. RS2016, 2011. 

Kulak, A. and Mlynarczyk, J.: ELF Propagation Parameters for the Ground-Ionosphere Waveguide With Finite Ground 

Conductivity, IEEE Trans. Antennas Propag., vol. 61, Issue: 4, 2013. 

Lehtinen, N. G., and U. S. Inan, Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere 425 

with application to radiation by a modulated electrojet, J. Geophys. Res., 113, A06301, 2008. 

Lehtinen, N. G., and U. S. Inan, Full-wave modeling of transionospheric propagation of VLF waves, Geophys. Res. Lett., 36, 

L03104, 2009. 

Li, D., Zhang, Q., Liu, T., Wang, Z.: Validation of the Cooray‐Rubinstein (C‐R) formula for a rough ground surface by using 

three-dimensional (3‐D) FDTD, J. Geophys. Res. Atmospheres, 118 (22), 12, 749-12, 754, 2013. 430 

Li, D., Zhang, Q., Wang, Z., Liu, T.: Computation of lightning horizontal field over the two-dimensional rough ground by 

using the three-dimensional FDTD, IEEE Trans. on Electromang. Compat., 56 (1), 143-148, 2014. 

Li, D., Azadifar, M., Rachidi, F., Rubinstein, M., Paolone, M., Pavanello, D., Metz, S., Zhang, Q., Wang, Z.: On lightning 

electromagnetic field propagation along an irregular terrain, IEEE Trans. on Electromang. Compat, 58 (1), 161-171, 2016. 

Li, D., Luque, A., Rachidi, F., Rubinstein, M., Azadifar, M., Diendorfer, G., Pichler, H.: The propagation effects of lightning 435 

electromagnetic fields over mountainous terrain in the earth‐Ionosphere waveguide, J. Geophys. Res. Atmospheres, 124 (24), 

14198-14219, 2019. 

Marshall, R. A., An improved model of the lightning electromagnetic field interaction with the D-region ionosphere, J. 

Geophys. Res., 117, A03316, 2012. 

Mlynarczyk, J., Kulak, A., Popek, M., Iwanski, R., Klucjasz, S., Kubisz, J.: An analysis of TLE-associated discharges using 440 

the data recorded by a new broadband ELF receiver, XVI International Conference on Atmospheric Electricity, 17-22 June 

2018, Nara city, Nara, Japan. 

Morente, J. A., Molina-Cuberos, G. J., Porti, J. A., Besser, B. P., Salinas, A., Schwingenschuch, K. and Lichtenegger, H.: A 

numerical simulation of Earth’s electromagnetic cavity with the Transmission Line Matrix method: Schumann resonances, J. 

Geophys. Res., Vol. 108, no. A5, p.1195, 2003. 445 

Mushtak, C. and Williams, E. R.: ELF propagation parameters for uniform models of the Earth-ionosphere waveguide, J. 

Atmospher. Solar-Terrestrial Phys., vol. 64, pp. 1989-2001, 2002. 

Navarro, E. A., Soriano, A., Morente, J. A. and Porti, J. A.: A finite difference time domain model for the Titan ionosphere 

Schumann resonances, Radio Sci., 42, RS2S04, 2007. 

Navarro, E. A., Soriano, A., Morente, J. A. and Porti, J. A.: Numerical analysis of ionosphere disturbances and Schumann 450 

mode splitting in the Earth-ionosphere cavity, J. Geophys. Res., 113, A09301, 2008. 



20 

 

Nickolaenko, A. P., Galuk, Y. P., Hayakawa, M.: Vertical profile of atmospheric conductivity that matches Schumann 

resonance observations, SpringerPlus, 5, 108, 2016. 

Nickolaenko, A.P., Y.P. Galuk, M. Hayakawa, I.G. Kudintseva: Model sub-ionospheric ELF – VLF pulses, J. Atmos. Solar-

Terr. Phys, 223, 2021. 455 

Ogawa, T., Y. Tanaka, M. Yasuhara, A. C. Fraser-Smith, and R. Gendrin. "Worldwide simultaneity of occurrence of a Q-type 

ELF burst in the Schumann resonance frequency range." Journal of geomagnetism and geoelectricity 19, no. 4: 377-384, 1967. 

Otsuyama, T., Sakuma, D. and Hayakawa, M.: FDTD analysis of ELF wave propagation and Schumann resonances for a 

subionospheric waveguide model, Radio Sci., 38(6), 1103, 2003. 

Qin, Z., Cummer, S.A., Chen, M., Lyu, F., Du, Y.: A Comparative Study of the Ray Theory Model With the Finite Difference 460 

Time Domain Model for Lightning Sferic Transmission in Earth-Ionosphere Waveguide, J. Geophys. Res. Atmospheres, 124, 

3335, 2019. 

Prácser, E., Bozóki, T., Sátori, G., Williams, E., Guha, A., and Yu, H.: Reconstruction of Global Lightning Activity Based on 

Schumann Resonance Measurements: Model Description and Synthetic Tests. Radio Science, 54, 3, 254-267, 2019. 

Rakov, V.: Lightning Return Stroke Speed, Journal of Lightning Research, Volume 1, pages 80-89, 2007. 465 

Samimi, B., Nguyen T. and Simpson, J. J.: Recent FDTD Advances for Electromagnetic Wave Propagation in the Ionosphere, 

Chapter 4 in Computational Electromagnetic Methods and Applications, Edited by Wen Yu, Norwood, MA: Artech, 2015. 

Simpson, J. J. and Taflove, A.: Two-dimensional FDTD model of antipodal ELF propagation and Schumann resonance of the 

Earth, IEEE Antennas and Wireless Propagation Letters, vol. 1, no. 2, pp. 53-56, 2002. 

Soriano, A., Navarro, E. A., Morente, J. A. and Porti, J. A.: A numerical study of the Schumann resonances in Mars with the 470 

FDTD method, J. Geophys. Res., 112, A06311, 2007. 

Suzuki, Y., Araki, S., Baba, Y., Tsuboi, T., Okabe, S., Rakov, V.: An FDTD Study of Errors in Magnetic Direction Finding 

of Lightning Due to the Presence of Conducting Structure Near the Field Measuring Station, Atmosphere 7, 92, 2016. 

Toledo-Redondo, S., Salinas, A., Fornieles, J., Porti, J. and Lichtenegger, H. I. M.: Full 3-D TLM simulations of the Earth-

ionosphere cavity: Effect of conductivity on the Schumann resonances, J. Geophys. Res. Space Physics, Vol. 121, Issue 6, pp. 475 

5579-5593, 2016.  

Yang, H. and Pasko, V. P.: Three-dimensional finite-difference time-domain modeling of the Earth-ionosphere cavity 

resonances, Geophys. Res. Lett., vol. 32, no. L03114, 2005. 

Yu, Y., Niu, J. and Simpson, J. J.: A 3-D global Earth-ionosphere FDTD model including an anisotropic magnetized plasma 

ionosphere, IEEE Trans. Antennas Propag., vol. 60, no. 7, pp. 3246-3256, 2012. 480 

Yang, H., Pasko, V. P. and Yair, Y.: Three-dimensional finite difference time domain modeling of the Schumann resonance 

parameters on Titan, Venus, and Mars, Radio Sci., 41, RS2S03, 2006. 

Zhang, Q., Li, D., Zhang, Y., Gao, J., Wang, Z.: On the accuracy of Wait's formula along a mixed propagation path within 1 

km from the lightning channel, IEEE Trans. on Electromang. Compat., 54 (5), 1042-1047, 2012. 



21 

 

Zhang, Q., Li, D., Fan, Y., Zhang, Y., Gao, J.: Examination of the Cooray‐Rubinstein (C‐R) formula for a mixed propagation 485 

path by using FDTD, J. Geophys. Res. Atmospheres, 117 (D15), 2012. 

 


	1 Introduction
	2 FDTD model
	2.1 Update equations
	2.2 Mesh
	2.3 Source

	3. Validation of the model
	3.1 Lossless spherical waveguide
	3.2 Spherical waveguide with a conducting layer
	3.3 Two-layered spherical waveguide

	4. Application of a realistic atmospheric conductivity profile
	4.1 Characteristic electric and magnetic altitudes
	4.2 Propagation parameters
	4.3 Spectral decomposition method
	4.4 Resonance frequencies of the Earth-ionosphere cavity

	5. Discussion
	6. Summary and conclusions
	Acknowledgments
	Author contributions
	References

