
F r o m  what was presented above it follows that in the case of cc h < 2cc H the types of t ra jec tor ies  possible 
near the upper hybrid resonance are  analogous to those examined ear l ie r  in the region of frequencies co ~ COp 
if COp >WH [3, 12]. An important  difference is that r eve r se  waves propagate when co ~ coh and w h < 2WH, while 
the waves are  di rect  when co ~ cop and a)p >COil" Tra jec to r i e s  of the loop type are possible in both cases  [3, 7, 
12], however,  and the c r i te r ia  for the formation of such t ra jec tor ies  are analogous. 

In conclusion, the author thanks B. N. Gershman for a discussion of the resul ts .  
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RESONANCE EFFECTS IN THE EARTH- IONOSPHERE CAVITY 
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Natural oscillations of an e lect r ical  type in the earth - ionosphere cavity are  analyzed with allow- 
aace for  the height profiles of the plasma pa ramete r s  of the lower ionosphere.  Besides the well-  
known branch of natural frequencies corresponding to Schumann resonances  (ones and tens of 
hertz) new resonance frequencies  are  obtained in the range of ones of ki lohertz.  The problem of 
forced oscillations of the cavity is solved within[he f ramework of the same model of the ionosphere. 
The resonance pa ramete r s  of the energy and cross  spectra are  compared with allowance for the 
suppress ion of interference.  

The spherical  cavity formed by the ea r th ' s  surface (conductance on the order  of 101~ ) and the lower 
ionosphere (conductance on the order  of 104) represen ts  an e lect romagnet ic  resonator  in a wide range of f re-  
quencies f rom ones of hertz  to ones of kilohertz.  

The resonance cavity is bounded below by the sphere r = a at which the jump in conductance reaches  
values on the order  of 10 l~ . The upper diffuse boundary is formed by the plasma of the lower ionosphere 
in which the part icle concentrat ion increases  with height. The ionosphere is in the constant magnetic field of 
the earth and represen ts ,  general ly speaking, a medium with double ref rac t ion [1, 2]. 
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The solution of the problem of the natural or forced oscillations of the resonator with allowance for all 
its properties encounters insuperable difficulties. Therefore, simplified cavity models are usually used. The 
simplest of them has been the model of an ideal resonator [3], within the framework of which Schumann ob- 
tained the following spectrum of natural frequencies: 

c (,~ + 1). L = 2~aV n (1) 

Here c is the velocity of light in a vacuum, a is the radius of the earth, and n is the number of the resonance 
mode. In part icular ,  fl = 10.6, f2 = 18.3, f3 = 26.0 Hz, etc. A whole ser ies  of more  complicated models a l -  
lowing one to take into account one or another proper t ies  of the resonator ,  such as the gyrotropy of its upper 
wall, were suggested later  [4-10]. 

In the present  repor t  we will not take into account the effect of the geomagnetic field and the angular 
nonuniformity of the ionosphere,  which lead to removal  of the degeneracy of the natural frequencies.  P r in -  
cipal attention will be paid to oscillations of the E-type in a resona tor  bounded above by the ionosphere,  [so-  
tropic and uniform over the angular coordinates,  the pa ramete r s  of which vary  with height. 

Even the f i rs t  experimental  studies showed that the observed resonance frequencies of 8, 14, 20, and 
26 Hz [11-13] differ considerably f rom those predicted in the model of an ideal resonator .  This discrepancy 
could be removed only through the use of models which allowed for the variat ion of the conductance of the 
ionosphere with height. Thus, for stepped models [13, 14] it was possible to connect the experimentally ob- 
served parameters  with the charac ter i s t ics  of the ionization profile: the heights of the beginnings of the steps 
and their conductances.  The pa ramete r s  of the two-step model can be determined from the f i rs t  four r e s o -  
nance frequencies or f rom the resonance frequencies and qualities of the f i rs t  two modes of oscillations [13]. 
Attempts were made to analytically solve the eigenvalue problem within the f ramework of some sufficiently 
general smooth profile of the lower ionosphere. It was assumed that the pa ramete r s  of the profile are  de ter -  
mined f rom a comparison of the calculated and experimental  data. The f i rs t  work of this type was that of 
Galejs (see [9] and the bibliography to it).* 

With such an approach the choice of a model of one type or another is a rb i t ra ry ,  general ly speaking. The 
results  of calculation and experiment are  compared f rom the resonance pa ramete r s  of not more than five 
modes, since the higher modes are  not stably observed. It is not surpr is ing  that the "cor rec t"  values of the 
frequencies and qualities can be obtained within the f ramework of the most  d iss imi lar  models.  (All the height 
profiles which allow one to solve the problem in known algebraic or t ranscendental  functions are  known for 
waves of the E-type in a spherical  coordinate sys tem with a permitt ivity e = e(r) [15].) 

Obviously, it is not enough to require  the simple coincidence of a finite number of calculated and exper i -  
mental pa ramete r s ;  it is also necessary  that the chosen model cor rec t ly  describe the general  laws of be-  
havior of e(r) with variat ion in height, which are  known f rom geophysics [10, 14, 19]. Unfortunately, not one of 
the analytical profiles [9, 15] satisfies this condition. 

As a result ,  the problem of the resonance oscillations of the e a r t h - i o n o s p h e r e  cavity within the f r ame-  
work of a smooth height profile e(r) must be solved numerical ly.  Below we will descr ibe an algori thm for such 
a solution with an a rb i t r a ry  height profile of the concentration of both electrons and ions. In principle by 
having a set of solutions for different profiles based on some geophysical data or other and by compar ing the 
resul ts  of the calculations with experimental  data one can choose the most  "real is t ic"  profile. Such an ap-  
proach to the solution of the stated problem was f i r s t  applied in [10], where the e a r t h - i o n o s p h e r e  resonator  
was modeled with a two-dimensional  t ransmiss ion  line. 

The use of the descr ibed algori thm within the f ramework of one of the real is t ic  models made it possible, 
as will be shown in the f i rs t  part  of the present  report ,  to obtain not only the Schumann resonance frequencies,  
but also the resonance paramete r s  of higher types of oscillations. 

The experimental  data on the Schumann resonance,  with which the results  of the calculations are  com-  
pared, are  charac te r ized  by a certain e r r o r .  It is connected not only with the apparatus,  but a lso with the 
experimental  method used. Therefore ,  when one and the same experimental  installation is used the accuracy  
of the choice of a height profile of the ionosphere essential ly depends on the method of the measurements  and 
the analysis of the data. In the second part  of the repor t  the various methods of measurement  are  compared 
using computer  modeling and the one which gives the most  reliable resul ts  is indicated. 

* A rather  complete and detailed presentat ion of the resul ts  of work on the Schumann resonance can be found 
in the monograph [23]. 
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N A T U R A L  F R E Q U E N C I E S  OF E - T Y P E  W A V E S  

In the solution of the problem of the natural frequencies the proper t ies  of the ionosphere will be taken 
into account with the help of the complex permit t ivi ty e(r), the values of which a re  determined by the electron 
and ion concentrat ions and by the frequency of collisions of electrons with other par t ic les .  For  simplicity,  we 
will consider  the ax i symmet r i c  problem, i . e . ,  0/8r = 0. Then f rom the sys tem of Maxwell 's  equations, after  
the introduction of the Hertz vec tor  II = Her, where e r  is the radial  unit vector ,  we obtain [16] 

o ,  + 1 o o + - Vr 75= - -  
Or 2 r ~ sin 0 O0 

Here k = c0/c is the wave number and a time dependence of the type e -ir176 is assumed.  The sca lar  function 17 
must  satisfy the following condition at the lower boundary of the resonator :  

__o u = - i k  ] 
(3) 6)1" ! r=a' 

where 6 is the reduced surface impedance of the earthTs surface,  and it must  satisfy the condition of emiss ion 
a s r ~ .  

By separat ing the var iables  in Eq. (2) and introducing the spherical  impedance 5n(r) [i7], which equals 

1 d [ V 7 ~  r .  (r)], (4) 
~, (r) = k ~ p.(r) dr 

we a r r ive  at an equation of the fo rm 

d ~(r )  + i k ~ ( r ) ~ ( r ) - -  ih n(n + 1) _ O. (5) 
d r  ikr~ ~ (r) 

The radial  function is designated as 0n(r), while the quantity n(n + 1) is the separation constant.  The index n 
is the number of the resonance mode (the zonal quantum number [4-14]). 

The boundary conditions (3) take the form 

~n(a) = -- ~; (6) 

a, (rt) = ~ (r,----) k' r~ ~ " (7) 

The condition (7) was obtained on the basis of the following physical considerat ions.  Elect romagnet ic  
waves of the indicated frequencies penetrate into the ionosphere to depths of severa l  tens of k i lometers .  It is 
therefore  natural to expect that the proper t ies  of the plasma at heights considerably g rea te r  than the thickness 
of the skin layer  do not affect the resonance frequencies .  Consequently, s tar t ing with some r -> r i one can set  
e(r) = e(r l) = const, and then in this region the eigenfunctions become spherical  Hankel functions of the f i rs t  
kind (the condition of emission),  and since their argument  I k r f ~ ' Y l  >> 1, one can also use an asymptotic r ep-  
resentat ion to obtain (7) for the values of n of interest  to us, which are  not very  large.  

The eigenvalue problem was solved numerical ly  by the method of success ive  approximations.  Let  k l be 
the t - th  approximation to the unknown eigenvalue k, and then the (l + 1)-st  approximation, according to 
Newton, equals 

/g+~ = kl - ~. (a; k t) + ~ (8) 

__0 [~,, (a; k ) l , ~ t  
Ok 

The value of the spherical  impedance 5n(a; k/) at the ea r th ' s  surface required in (8) is found f rom Eq. (5), which 
is integrated numerical ly  f rom the height r = r I to r = a. After  the determination of k/+t, Eq. (5) is again inte- 
grated numerical ly,  as a resul t  of which one finds 5n(a;  kl+t), f rom which k/+2 is constructed,  etc. The i t e ra -  
tion process  is stopped when the values of k l and k/+l differ by less than a given amount. The values of the 
derivative (O/Ok)6n(a;k) are  found exactly like the values of 6n(a; k), only the differential equation and the 
boundary- conditions for it a re  obtained f rom (4), (6), and (7) by differentiation with respec t  to k. The initial 
height ri is chosen by examination; i . e . ,  the problem is solved for severa l  r 1 and then one settles on a value 
such that when it is var ied  the resul t  of the solution remains  constant within the limits of a given accuracy.  
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T A B L E  1. R e s u l t s  of Solut ion of the  P r o b l e m  of N a t u r a l  F r e q u e n c i e s  of the  E a r t h - I o n o s p h e r e  R e s o n a t o r  and  
T h e i r  C o m p a r i s o n  with  E x p e r i m e n t a l  Data  

0 

O 

3 

fpz, Hz fix, Hz Qp, fp3, Hz Op3 ft~ , Hz 

7,80 
2005,70 
4063,87 
6116,76 

4,63 

9 , ~  
10,37 

13,79 
'2005,74 
4063,89 
6116,78 

5,96 
%04 
9,30 

10,37 

19,73 
2005,81 
4063,93 
6116,80 

6,55 
%04 
9,30 

10,37 

25,68 
2005,91 
4063,97 
6116,83 

Qp~ 

6,83 
9,04 
9,20 

10,37 

l~fereno~ f01, Hz O0z f~, HZ Qe= f~,  Hz Qoa f~4, Hz, Qo4 

4--5,3 
4 

4,86 

7,8 
8,0 
7 , ~  
7,85 

14,1 
14,0 
14,1 
13,82 

Baler and Wagner 113 
~ Madden and Thomtmon [103 
-~ Jonas [13] 

m~ A~ Uk~SSa. 
x 2;J 

4,5 
5 

4,95 
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20,3 
20,0 
20,2 
20,0 

5 
5 

4,89 

26,4 
26,5 
26,1 
26,1 

5,5 
6 

5,26 

5., Hz  QDs 

31,67 6,95 
2006,02 9,04 
4O64,O4 9,3O 
6116,88 10,37 

32,5 6 

32,7 
31,9 5,34 

B e f o r e  d i s c u s s i n g  the r e s u l t s  of the c a l c u l a t i o n s ,  which  a r e  p r e s e n t e d  in T a b l e  1, we note tha t  the f r e -  
quenc i e s  of the t h r e e - d i m e n s i o n a l  e a r t h - i o n o s p h e r e  c a v i t y  m u s t  have t h r e e  i n d i c e s :  Wpn m.  He re  m is  the  
a z i m u t h a l  n u m b e r ,  which  p l a y s  an  i m p o r t a n t  r o l e  in the a b s e n c e  of a n g u l a r  s y m m e t r y  of the  r e s o n a t o r  [5-8]. 
In our  c a s e  0 [ a r  = 0 and the e igem,  a l u e s  do not depend  on m,  and t h e r e f o r e  one c a n  take  m = 0 and d r o p  the 
index i t s e l f ;  n is  the  zona l  e i gemmlue ,  equa l  to  the  n u m b e r  of waves  of the o s c i l l a t i o n s  which  f i t  a long  the 
e a r t h ' s  e q u a t o r ;  p is  the " long i tud ina l "  n u m b e r ,  equa l  to the n u m b e r  of h a l f - w a v e s  which  f i t  a long  a r a d i u s  
b e t w e e n  the po in ts  a and the e f f ec t ive  poin t  of r e f l e c t i o n  of the r a d i o  w a v e s  f r o m  the i o n o s p h e r e .  

F o r  Schumann r e s o n a n c e  f r e q u e n c i e s  the index  p = 0, whi le  the index n, not equa l  to  z e r o ,  is  c a l l e d  the 
mode  n u m b e r .  In  th is  c a s e  the r a d i a l  func t ions  pn(r )  v a r y  very- s lowly  with  r ,  and t h e r e f o r e  the w a v e s  a r e  
c a l l e d  null  E - w a v e s  o r  q u a s i - T E M - w a v e s  [10, 18]. Other  o s c i l l a t i o n s  m u s t  e x i s t  in the e a r t h - i o n o s p h e r e  
cav i t y  b e s i d e s  the so lu t i ons  with p = 0. The  l o w e s t  n a t u r a l  f r e q u e n c y  with  p = 1 c o r r e s p o n d s  to ha l f  the  length  
of the wave  which  f i t s  a long  the he igh t  of the r e s o n a t o r ,  on the  o r d e r  of 100 k in ,  f r o m  which  we ge t  Wln/27r = 
3 �9 105/200 = 1500 (Hz). T h e s e  o s c i l l a t i o n s  d i f f e r  in p h y s i c a l  na tu re  f r o m  Schumann r e s o n a n c e s  in that  i t  i s  
not  " o b l i g a t o r y "  fo r  t h e m  to run  a r o u n d  the e a r t h .  The  r e s o n a n c e s  have a " t r a n s v e r s e "  c h a r a c t e r  when the 
w a v e s  run  a long  the r a d i u s  and a r e  r e f l e c t e d  f r o m  the e a r t h  and the i o n o s p h e r e .  On the s t r e n g t h  of th i s  the 
e i g e n v a l u e s  O~pn a r e  a l m o s t  i ndependen t  of n when p ;~ 0 (see  T a b l e  1). 

The  m e t h o d  of c a l c u l a t i o n  p r e s e n t e d  a l l o w s  one to ob t a in  not only the Schumann f r e q u e n c i e s ,  but  a l s o  the 
f r e q u e n c i e s  of h i g h e r  t ypes  of o s c i l l a t i o n s  with p ~ 0, which have  not y e t  b e e n  d e t e c t e d  e x p e r i m e n t a l l y .  

S t r i c t l y  s p e a k i n g ,  b e s i d e s  the r e s o n a n c e s  of E - t y p e  w a v e s ,  in the  e a r t h - i o n o s p h e r e  cav i t y  one should  
a l s o  o b s e r v e  r e s o n a n c e s  of H - w a v e s  whose  p o l a r i z a t i o n  is  h o r i z o n t a l .  The  n a t u r a l  f r e q u e n c i e s  ~ p n m  of t h e s e  
w a v e s  a l s o  l ie  in the k i l o h e r t z  r a n g e ,  with p ~ 0 a l w a y s  fo r  t hem.  The  c o m p l e t e  s equence  of r e s o n a n c e  f r e -  
quenc ie s  of the e a r t h - i o n o s p h e r e  c a v i t y  with f ixed  n and m s a t i s f i e s  the fo l lowing  condi t ion ,  which i s  we l l  
known f r o m  e l e c t r o d y n a m i c s :  

~0~ < ~1.~ < ~i= < ~,.~ < ~,.~ < .... (9) 

The first frequency in this sequence corresponds to the Schumann resonance, while the rest correspond to the 

"transverse" resonances of H- and E-waves. 

Graphs of the height profiles of the electron and ion concentrations of the lower ionosphere which we 
used in the calculations are presented in Fig. 1. On the one hand, the graphs agree with the well-known models 

of the lower ionosphere [1, 2, 10, 19], while on the other, they give values of the frequencies and qualities 

t i t  i s  p o s s i b l e  tha t  such r e s o n a n c e s  w e r e  d e t e c t e d  in e x p e r i m e n t s  of the S c i e n t i f i c - R e s e a r c h  In s t i t u t e  of R a d i o -  
p h y s i c s  (Gor 'k i i )  on n o n l i n e a r  e f f ec t s  in  the l o w e r  i o n o s p h e r e  in which  power fu l  r a d i a t i o n  of the SW r a n g e  
m o d u l a t e d  with  a f r e q u e n c y  of f r o m  2 to 7 kHz  was  inc iden t  on the i o n o s p h e r e  [24]. Then  the m a x i m u m  of the 
r e c e i v e d  If  s i gna l  a t  a f r e q u e n c y  of 2.5 kHz can  be  exp l a ined  by the e x c i t a t i o n  of " t r a n s v e r s e "  r e s o n a t o r s  of 

the cav i t y .  
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which are  close to the experimental  values [10-14] (see Table 1, where the results  of the calculations and the 
experimental  data are  presented).  

F I L T R A T I O N  OF L O C A L  I N T E R F E R E N C E  

Because of the large losses  in the e a r t h - i o n o s p h e r e  cavity, periodic oscillations of the resonance f r e -  
quencies are  not observed.  The resonances  a re  usually detected f rom maxima of the spectra l  density of 
natural  radio noise excited by the e lectromagnet ic  radiation of thunders torm discharges .  In this case the f r e -  
quencies of the maxima in the energy spec t rum of slf noise are  identified with the resonance frequencies,  
while the relat ive widths of the resonance peaks are  connected with the quality of the resonator .  

With such a determinat ion of the resonance pa rame te r s  an important  role can be played by the inter-  
ference [10, 20, 21], i . e . ,  natural or  art if icial  slf signals not connected with resonance effects~ Such in ter -  
ference includes induction f rom e lec t r ica l  t ransmiss ion  lines and telegraph lines, oscillations of the antenna 
charge  produced by wind, var ious  e lec t ros ta t ic  inductions, etc. [20, 21]. The interference incident on the 
r ece ive r  input is r ecorded  together with the resonance signal: 

S( t )  = u( t )  + n(t). (10) 

Here S(t) is the recorded  signal, u(t) is the resonance signal, and n(t) is the interference.  

It is easy to see that in this case the energy spec t rum of the signal consis ts  of the sum of the spectra  of 
the in terference and the resonance signal,* 

G(f) ----- O~{,f) + N(I), (11) 

where the energy spec t rum of the resonance signal equals 
o o  

Gres(/) = S t l ( t ) u ( t  + ~) e2~"/~d% (12) 

while the energy spec t rum of the interference is 
o o  

N ( t )  = ~ n (t) n (t + x)e2~'/'dz. (13) 

The bar  above signifies averaging over time t. 

Usually the in terference compr i ses  f rom 0.5 to 0.8 of the level of the resonance signal [6, 10, 20, 21]. 
Calculated spectra a re  shown in Fig. 2: Curve 2 is the resonance spect rum Gres(f), curve 3 is the interference 
spec t rum Nff), and curve 4 is the resul tant  spec t rum G(f). 

*Here  and later  the subject  concerns  Schumann resonances .  
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The following model  was adopted in the solution of the p rob lem of exci tat ion of the r e sona to r .  The 
p a r a m e t e r s  of the e a r t h - i o n o s p h e r e  cavity a re  the same as for  the uni form p rob l em (see Fig.  1). Ver t ica l ,  
mutual ly  independent, random thunders to rm d ischarges ,  uniformly dis t r ibuted over  the surface  of the planet,  
were  chosen as the sources  of the e lec t romagne t ic  radia t ion of the s lf  range.  The spec t rum of the sources  
did not depend on frequency.  It was a s s um ed  that the in te r fe rence  spec t rum is smooth,  while the following 
re la t ion  is sat isf ied at the resonance  f requencies :  

N (t') ~ 0.8"ares(f)- (14) 

As seen f rom Fig. 2, the p resence  of in te r fe rence  "e leva tes"  the energy spec t rum Gres f f  ) of the resonance  
sigaaIL above the f requency axis,  which leads to e r r o r s  in the de terminat ion  of the quali t ies Q0n (see Table  2), 
To  suppress  the in te r fe rence  and inc rease  the re l iabi l i ty  of the exper imenta l  r e su l t s  one can use the difference 
in the co r re la t ion  radi i  of the in te r fe rence  and the resonance  signals [6, 10]. Actually,  the resonance  signals 
have a cor re la t ion  radius comparab le  with the length of the e a r t h ' s  equator,  while the in te r fe rence ,  having a 
nonresonance nature,  has a considerably s m a l l e r  co r re l a t ion  rad ius .  The re fo re ,  in the recept ion  of s ignals  
over  dis tances  l a r g e r  than the co r re l a t ion  radius  of the in te r fe rence  but s m a l l e r  than the wavelength of the 
highest  mode being studied, we obtain 

St (t) = tfi (t) + nz(t); {15) 

S~ (t) = us (t) + n~ (t). (16) 

H e r e  ul (t) and u~(t) a r e  the r e s o n a n c e  s i g n a l s ,  whi le  n 1 (t) and n2(t) a r e  the m u t u a l l y  i ndep en den t  i n t e r f e r e n c e s  
at  the f i r s t  and second points.  

TABLE 2. Resonance P a r a m e t e r s  Found f rom Spectra of Fig. 2 

Type of model 
p = 0  

Initial model 
Energy spectrum widm~t 
inte~e.rsnce 

Energy spectrum with 
intex~mnce 

Cross spectmrr k inter- 
ference suppressed 

n=I 
f, Hz 

7,8 

7,8 

7,8 

7,8 

IT. ~ 0 Hz i Q f, Hz 

,63 13,8 [5.96 19,7 

,30 13,8 '.5.35 19,9 

,40 13,8 3,31 19,9 

,73 13,8 5,40 20,0 

n~3 [ n=4 [..~,n=5 

Q f, fQ  -To 

5, 1 z ,9 t6,27132.0 6,o3 

++ l '3,98 1 25,9 4,48 31,9 4,70 

5,72 25,9 6,30] 32,0 ] 6,35 
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By making a co r r e l a t i on  analys is  of the s ignals ,  i . e . ,  const ruct ing their  c ros s  spec t rum [22], we obtain 

(17) 
- - o O  - - ~  

I t  is seen f rom Eq. (17) that the in t e r fe rence  is comple te ly  supp re s sed  in the c ro s s  spec t rum.  

In con t ras t  to the energy  spec t rum,  the c ross  spec t rum is ,  genera l ly  speaking, a complex function of the 
f requency.  In the exci tat ion model  which we chose it turns out to be r ea l  but not posi t ive-def ini te .  Fo r  a 
sepa ra t ion  of 5000 km between the observa t ion  points the c r o s s  spec t rum has the form shown in Fig. 2 (curve 
1). The change in the sign of Gl2(f) at f ~ 17 Hz means  that  in the chosen model at  f requencies  g r e a t e r  than 
17 Hz the osci l la t ions at the f i r s t  and second points take place in ant iphase.  

The data p resen ted  allow one to draw the following conclusions.  Resonance osci l lat ions of s e v e r a l  types 
can exis t  in the e a r t h -  ionosphere  cavi ty .  The lowest  branch  of the natural  f requencies  is the Schumann r e s o -  
nances.  The natural  f requencies  of h igher  types lie in the range  of ones of k i loher tz  and are  prac t ica l ly  inde- 
pendent of the zonal quantum number  n. 

In a compar i son  of calculated and exper imen ta l  data on a Schumann resonance  one mus t  allow for  the 
d is tor t ing effect  of in te r fe rence ,  which can be reduced through the coherent  recept ion  of s ignals  at r emo te ly  
sepa ra t ed  points and a subsequent  co r re l a t ion  ana lys i s .  
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