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Rapid development of computers allows for application of the direct numerical solution of the global
electromagnetic resonance problem in the Earth-ionosphere cavity. Direct numerical solutions exploit
the cavity models with the given conductivity profile of atmosphere such as exponential or the knee
profiles. These profiles are usually derived from the knee model by Mushtak and Williams (2002) de-
veloped for obtaining the realistic ELF propagation constant. It is usually forgotten that profiles of the
knee model are only a convenient approximate interpretation for the heuristic relations used in com-
putations. We demonstrate that the rigorous full wave solution of the electromagnetic problem for such
profiles deviates from that obtained in the knee model. Therefore the direct numerical solutions must
also depart from the heuristic one. We evaluate deviations of the heuristic knee model data from those
pertinent to equivalent profile of atmospheric conductivity.

Conductivity profile

© 2015 Published by Elsevier Ltd.

1. Introduction

Owing to rapid development of computing resources, the direct
modeling of radio propagation in the Earth-ionosphere cavity is
widely used in the studies of global electromagnetic resonance
(e.g. Kirillov, 1993, 1996, 1998; Kirillov et al., 1997; Kirillov and
Kopeykin, 2002; Hayakawa and Otsuyama, 2002; Otsuyama et al.,
2003; Pechony and Price, 2004; Pechony, 2007; Ando et al., 2005;
Morente et al., 2003; Yang and Pasko, 2005, 2007; Yang et al.,
2006; Molina-Cuberos et al., 2006; Toledo-Redondo et al., 2010,
2013). The Maxwell's equations are solved numerically in this case.
Typically, modern versions are used of the two-dimensional
transmission line and relevant telegraph equations (regarded as
2DTU) or the grid methods. The most popular among the latter is
the Finite Difference in Time Domain (FDTD) technique. A direct
numerical solution demands enormous amount of operations, but
its crucial advantage is in the flexibility. It allows for numerical
simulation of the real Earth-ionosphere cavity with all its features,
including the global ionospheric irregularities such as polar non-
uniformity or the day-night asymmetry.

The FDTD technique became especially popular, so much that it

* Corresponding author.
E-mail addresses: galyuck@paloma.spbu.ru (Yu.P. Galuk),
sasha@ire.kharkov.ua (A.P. Nickolaenko),
hayakawa@hi-seismo-em.jp (M. Hayakawa).

http://dx.doi.org/10.1016/j.jastp.2015.10.008
1364-6826/© 2015 Published by Elsevier Ltd.

is included into the MATLAB software. Typically, the electrical
properties of ionospheric plasma are described by either an ex-
ponential vertical conductivity profile or a bended-knee profile
(bended-knee model). These models were developed to obtain a
realistic frequency dependence of the ELF propagation constant v
(f). The propagation constant is used in the classical solution of the
Schumann resonance problem in the form of zonal harmonics
series representation (ZHSR) (e.g. Nickolaenko and Hayakawa,
2002, 2014). It turns out that the FDTD solution deviates from that
obtained by ZHSR in the knee model in spite of the application of
the same field source and the “same” vertical conductivity profile
a(h).

The ELF radio propagation in a uniform Earth-ionosphere
cavity has been investigated for a long time. Field representations
in the form of zonal harmonic series are given in the literature for
both the frequency and the time domains (see e.g. Nickolaenko
and Hayakawa, 2002, 2014). Knowledge of the complex radio
propagation constant v(f) is sufficient for computing the Schu-
mann resonance fields. The v(f) function is determined by the
global properties of the lower ionosphere. However, owing to poor
knowledge of the plasma parameters at altitudes from 40 to
100 km, the propagation constant cannot be derived from the io-
nospheric data, and the heuristic v(f) models are used instead. The
majority of these is based on the experimental observations. Ishaq
and Jones (1977) suggested the most reliable model, which is a
nonlinear function of frequency. There are also other models
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(Nickolaenko and Hayakawa, 2002, 2014). The formal solution of
the inverse electromagnetic problem is still due: finding the pro-
file of atmospheric conductivity o(h) from the v(f) dependence
based on the Schumann resonance records.

Knowledge of the vertical profile of atmosphere conductivity is
necessary for investigating the possible electrical activity on other
planets. Electric activity might be a source for the global electro-
magnetic resonance, and therefore an estimate is desirable of the
expected resonant frequencies for the known parameters of pla-
netary atmosphere (see Nickolaenko and Rabinowicz, 1982, 1987;
Sentman, 1990a; Pechony and Price, 2004; Yang et al., 2006; Mo-
lina-Cuberos et al., 2006 and references therein). The height pro-
file also becomes necessary when one wants to evaluate the im-
pact of various disturbances in the lower ionosphere on the v/(f)
dependence and, consequently, on the resonance pattern. These
problems are related to the seismic activity and the space weather
(Nickolaenko and Hayakawa, 2002, 2014).

Determining the v/(f) function is difficult, which is relevant to a
particular profile o(h). We disregard the cases when unrealistic
conductivity profiles allow for formal solving the electromagnetic
problem in certain special functions: these cases were listed in
Bliokh et al. (1980). The horizontally uniform layered atmosphere
is assumed in the general formulation of the problem to be an
isotropic medium, so that the o(h) profile is introduced as a set of
thin vertically uniform layers. The rigorous solution of such a
problem is multi-parametric. It is necessary to write the solutions
of the wave equation for each of N layers and satisfy the 2N
boundary conditions. Thus, a system of 2N linear equations ap-
pears for the wave transition and reflection coefficients at each
layer (Wait, 1970). This problem can be reformulated to the first
order differential equation for the surface impedance of the field.
The equation itself becomes nonlinear, and the solution may be
built only numerically. The approach is well known, which is re-
garded as the Full Wave Solution (FWS) (see Wait, 1970; Hynninen
and Galuk, 1972; Bliokh et al., 1977). Application of FWS is asso-
ciated with performing time-consuming calculations, although
less massive as in the FDTD technique.

Greifinger and Greifinger (1978) suggested the approximate
expressions for the propagation constant v at a fixed ELF frequency
in terms of the exponential conductivity profile os(h). The ex-
ponential conductivity profiles were used in the very low fre-
quency band (VLF, 3-30 kHz) long before the Greifinger's pub-
lication (see e.g. Wait and Spies, 1964). However, as Greifinger and
Greifinger (1978) have demonstrated, application of an ex-
ponential profile is different when we turn to the extremely low
frequencies (ELF, 3-3000 Hz). They proposed approximate rela-
tions for computing the complex propagation constant v involving
the characteristic “electric” and “magnetic” heights together with
the relevant height scales. The lower characteristic (electric)
height is derived at the given frequency from the equality of the
conductivity and the displacement currents. At the fixed frequency
f the height hg corresponds to the condition:

o(hg) = op = 2n-f-eq, (1

where w= 27 f is the circular frequency and £,=8.859-10" 12 F/
m is the permittivity of vacuum.

After finding the electric height, one turns to the upper, mag-
netic height hy, where the wavelength in the plasma at the given
frequency is equal to the local scale height {:

o(hy) = oy = [4ugw-Gy’ T, @)

here pq is the permeability of vacuum and &y, is the scale height of
profile in the vicinity of upper characteristic height.

With the help of two characteristic heights hg and hy, and two
height scales ¢ and {y; of the classical profile by Cole and Pierce

(1965) the values of the propagation constant were obtained by
the measurements of ELF radio signals transmitted by the Wis-
consin Test Facility. Thus the Greifinger and Greifinger (1978)
model proved to be convenient and rather efficient. This is why a
desire emerged to adapt it to the calculation of Schumann re-
sonance parameters. However, there were two obstacles to over-
come. The first was the fact that formulas by Greifinger and
Greifinger (1978) were obtained for the flat Earth-ionosphere
duct. The global resonance is possible only in a spherical cavity
and at the particular frequencies when the radio waves have tra-
veled around the planet meet in phase. Thus, spherical geometry is
a requisite feature. This first obstacle was overcome by demon-
strating that the formulas derived in the flat cavity are also held in
the spherical geometry, provided that the signal frequency exceeds
a few hertz.

The second problem is that unlike the ELF radio transmissions,
the natural signals of global electromagnetic resonance cover a
broad band approximately a decade. So, the second obstacle was a
frustrating prospect of multiple s(h) plots for different values of
signal frequency for finding graphically the new characteristic
heights and height scales. This difficulty was overcome by deriving
formulas for the electric and magnetic height as functions of fre-
quency. For this purpose the reference height and reference fre-
quency were introduced. All this has been done in the works by
Nickolaenko and Rabinowicz (1982, 1987) devoted to estimates of
feasible global resonance on other planets of Solar system. The
Earth-ionosphere cavity acted in these papers as a test for asses-
sing the accuracy of the approach. Later, similar formulas were
published by Sentman (19904, b) and Fullekrug (2000).

Advantage of approximate solutions for the propagation con-
stant relevant to the exponential conductivity profile does not lie
only in its simplicity. In addition, the approach allows for rea-
sonable interpretation of observations in terms of rather realistic
parameters of the lower ionosphere.

Further development of the approach was associated with
elaboration of more sophisticated model profiles. In particular, the
knee 4(h) profiles were suggested with a bend (or kink) at an al-
titude between 50 and 60 km. This is the region where the con-
ductivity switches from ionic conductivity dominating below
~50 km to a more rapidly varying electronic conductivity dom-
inating above ~60 km (see Kirillov, 1993, 1996, 1998; Kirillov
et al.,, 1997; Kirillov and Kopeykin, 2002; Mushtak and Williams,
2002; Pechony and Price 2004; Pechony 2007; Greifinger et al.,
2007). In these works a method was suggested for determining the
v(f) propagation constant. An alternative is obtaining the effective
R, L, C parameters of the cells in artificial transmission line used in
the two-dimensional telegraph equations (2DTU).

A set of heuristic knee models was suggested by Pechony and
Price (2004) and Pechony (2007). However, it was not emphasized
that such an efficient and rather convenient approach only ap-
proximately matches the results obtained in the rigorous solution
for the actual conductivity profile s(h). In other words, if we use
the real parts of complex characteristic heights of the knee model
together with the relevant scale heights for constructing the real
function ¢(h) and find the complex propagation constant ¢/(f) from
the rigorous full wave solution, the result will deviate from that
based on the knee model equations. These deviations were de-
monstrated for the exponential profile by Jones and Knott (1999,
2003). In order to do this, the expected resonance frequencies and
the Q-factors were estimated. It has been shown that the results of
the exponential model deviate from the FWS for the Schumann
resonance. That is, the resonant frequencies remained almost
unchanged (deviations ranged between 0.15% and 1.2%), while the
Q-factors or the wave attenuation departed by more than 10%.

Similarly to the exponential profile, the popular knee models
remain a convenient procedure for obtaining the heuristic v/(f)
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dependence. They also must lead to departures in the wave at-
tenuation rate from the rigorous values based on the FWS. In this
paper, we use the knee model by Mushtak and Williams (2002)
and check its correspondence to the rigorous FWS. This discussion
is opportune, since exponential and knee profiles are usually ap-
plied in the FDTD technique.

2. Knee profiles

We consider three model profiles and two heuristic models of
propagation constant. Fig. 1 shows these conductivity profiles.
Traditionally, the height h being the argument of o(h) function is
plotted on the ordinate in kilometers and the abscissa depicts the
logarithm of the air conductivity (S/m).

Profile 1 (the solid thick line) in Fig. 1 presents the altitude
profile introduced by Cole and Pierce (1965); it is often used when
demonstrating the conductivity of regular ionosphere below
100 km. Profile 2 (the line with asterisks)is the knee profile by
Mushtak and Williams (2002). The profile combines two ex-
ponential height factions o(h)=exp(—h/{) in its lower part. These
lines intersect at the knee height hyyeg=55 km. Since the knee
reference frequency is fynee=10 Hz (see Table 1), the air con-
ductivity at the knee height is readily found from Eq. (1) being
equal to ¢5=>5.5663-10"1°S/m. The scale height is equal to
{p=8.3 km below the knee, and it is {;=2.9 km above the knee
altitude. The characteristic electric height hg is found in the knee
area, and it is used in the heuristic formulas for deriving the ELF
propagation constant v(f). The upper, or the magnetic height hy,
was postulated to be 96.5 km (Mushtak and Williams, 2002). Here,
the air conductivity is o,,=0.9895 S/m is found from Eq. (2) for the
magnetic reference frequency f,, =8 Hz, and the height scale is &y
=4 km. Parameters of the knee profile are listed in Table 1. We call
the part above the kink the magnetic, and below, the electric part
of the profile.

When the logarithmic scale is used along the ordinate, the
profile 2 is a piecewise-linear line with two kinks. Its lower section
of profile 2 forms the knee, while its upper part must pass through
the magnetic conductivity o,, at the 96.5 km height and have the
tilt corresponding to “magnetic” scale height of 4 km. As Fig. 2
shows, the straight line drawn from this “magnetic” point inter-
sects with the upward going “electric” part of profile at around
83 km. We use the profile with ‘magnetic’ parameters above the

h, km
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Fig. 1. Conductivity profiles of atmosphere used in calculations of propagation
constant. The smooth curve 1 shows the profile by Cole and Pierce (1965) being the
regular altitude variations of the air conductivity, the broken line 2 is the knee
profile by Mushtak and Williams (2002), and line 3 is the “electric” part of the knee
profile, which is often used in the FDTD simulations.

Table 1
Parameters of the knee profile.

Knee frequency finer Hz 10
Knee height hgnge km 55
Scale height above the knee ¢, km 2.9
Scale height below knee ¢, km 83
Magnetic reference height hm km 96.5
Magnetic reference frequency f,, Hz 8
Magnetic scale height at reference frequency ¢, km 4
Reference frequency of magnetic scale height f,," Hz 8
Parameter of frequency dependence of magnetic scale height b, km 20
1h, km : i i i i ‘
140 - A A R R A
e i s o
100 —fbeseemmeeed — e s o e S
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Fig. 2. Model profile and the attenuation rate. Upper frame shows the conductivity
profile relevant to the knee model by Mushtak and Williams (2002). The lower
frame shows the attenuation rate: the smooth black line depicts the heuristic knee
model data, and line with dots is the full wave solution for the knee conductivity
profile.

83 km altitude, and the ‘electric’ parameters below it.

The piecewise-linear line with circles 3 in Fig. 1 is a simplified
profile that was built exclusively on the knee parameters. It is
formed by two straight lines of different slope, which intersect at
the knee altitude. Profiles 2 and 3 of Fig. 1 coincide below the
83 km, while Profile 3 continues with the electric scale height of
2.9 km above 83 km. Therefore, it is found somewhat below the
Profile 2 linked to the magnetic height and having the magnetic
scale height of 4 km.

It is important to note that in contrast to the smooth classical
plot 1 reflecting the aeronomy data, the profiles 2 and 3 corre-
spond to a convenient interpretation of the heuristic formulas for
the ELF propagation constant. This becomes especially clear if we
recall that all parameters of the knee model depend on the
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frequency. Moreover, the electric parameters are based on the
reference frequency of 10 Hz, while the magnetic characteristics
refer to the reference frequency of 8 Hz.

3. Rigorous solution of the problem

In a rigorous treatment of ELF radio propagation in a horizon-
tally stratified medium, one obtains a system of linear algebraic
equations for the wave transition and reflection coefficients in the
adjacent layers. The problem formulation in terms of the surface
impedance is more convenient than a direct application of
boundary conditions for the horizontal electric and magnetic field
components at each boundary. Thus, the problem is reduced to a
first-order differential equation (Wait, 1970), the solution of which
is constructed numerically. Description of particular procedures
and the results obtained for a realistic conductivity profile can be
found in the papers by Hynninen and Galuk (1972), Bliokh et al.
(1977), and Galuk and Ivanov (1978). We only outline the relevant
process below.

One can obtain the following first order nonlinear equation for
the spherical surface impedance &(r) when treating the eigen-va-
lue problem in the Earth-ionosphere cavity formed by the strati-

io(r).

fied plasma of the a complex dielectric constant &(r) = 1 + i=2:

weQ
viv+ 1) -0

ixr2e(r) ' 3)

i(S(r) — ixe(r)s(r) + ix +
dr

Here the exp (+iwt) time dependence is assumed, &(r) is the
spherical surface impedance at the interfaces of the adjacent lay-
ers of ionospheric plasma; v is the complex eigen-value (the
propagation constant) sought; k is the wave number k=w/c; c is
the light velocity in vacuum; r is the radius of the spherical polar
coordinate system (r, 0, ¢); &(r) is the dielectric constant of the
plasma, a function of the height.

The radial operator is defined on the semi-infinite interval [a;
o0), it has the sought eigen-values A=v (v+1). The boundary
conditions for the surface impedance must be formulated in ad-
dition to Eq. (3).

The surface impedance (3) depends on the radius r (altitude
above the ground), and it is determined by the conductivity of the
soil at the air-land interface. The Earth might be considered as
perfectly conducting at ELF, so that the first boundary condition
takes the form 6(a)=0, where a is the Earth’s radius. Since radio
waves of a given frequency w strongly attenuate with the altitude
inside the ionospheric, the plasma properties above a few skin-
depths provide no impact on the result obtained.

The penetration depth of ELF radio wave into plasma depends
on frequency w, but it never exceeds the 100 km altitude. There-
fore, the plasma was regarded as uniform along the radius from
the 100 km height: i.e., we used &(r)=const when r > r;=100 km.
At the 100 km boundary we use the surface impedance of the
uniform highly conducting plasma, so that the second boundary
condition takes the form 8(r;)=[ge(r1)]~ /%, where le(r;)»1.

In fact, the complex eigen-value problem is reduced to finding
the parameter A from the nonlinear equation &(a, 1)=0. The
function &(a, A) is obtained by numerical integration of Eq. (3) from
the height r, to r=a. The function &(a, 1) is analytic with respect to
the parameter 4, so that its roots can be found by iterations or by
the Newton’s method. Let A’ be the I order iteration to the sought
eigen-value 4, then the (4 1)-th iteration in accordance with the

Newton’s method is:
w1 8@ A
)
0@ A) 4

After obtaining the A' iteration, the integration of Eq. (3) is

repeated with the new eigen-value thus providing the next, A'*!
iteration. The process is repeated until the old and new eigen-
values deviate by less than 10~7. The derivative 0%5(a; J) is ob-
tained by integrating the differential Eq. (3) for &) = %5(r, 2)
together with the §(r) function. The equation for this surface im-

pedance function and the boundary value at r=r; is obtained by
differentiating Eq. (3) in respect to parameter A:

d . 1

a(Sl(r) — 2ixe(r)s(r)é4(r) + - 0 5)
and

5 =0 (6)

The height r; was chosen by exhaustive search: solutions were
construed for several r; values, and the value of 100 km was
chosen since the variation of the eigen-value did not exceed the
107 level when r; was set above this height. This method allows
finding both the zero mode (the propagating mode) eigen-value
and also solutions for the localized waves trapped in the Earth-
ionosphere duct or the transverse resonance. The Newton’s pro-
cedure converges to the root that is closest to the initial approx-
imation. Therefore, we eliminated the already found root with the
help of Bézout’s theorem: instead of searching the roots of the
initial function ¢ (4)=0, we use the auxiliary function
&, = W where A; denote the already found roots of the
function ¢, and n is the number of these roots. It is easy to see that
the ¢, function has the same roots as the original function ¢,
except for the already known first n roots.

When calculating the field components, one has to derive both
the eigen-values and the so-called integral norm N°. Physical
meaning of this quantity is clear from the relation N° = /a ooEr(r)dr
where a is the Earth's radius (Kirillov, 1993, 1996, 1998, Kirillov
et al., 1997, Kirillov and Kopeykin, 2002, Galuk and Ivanov, 1978).
This norm does not require additional computations in our
scheme, since

N = ika?-25(a; 1) = ika%y(a).
ika al&(a, 2) = ika%s,(a) 7

4. The ELF propagation constant

The altitude profile of atmospheric conductivity o(h) does not
depend on the radio wave frequency. The knee profile, as well as
the exponential models that are used in computations of ELF
propagation constant are nothing else, but a convenient inter-
pretation for the heuristic dependence v(f). It would be naive to
expect that the approximate equations of Mushtak and Williams
(2002) provide the same complex ELF propagation constant as the
rigorous FWS of the electrodynamics problem, even when one
applies the same profile, say, the profile 2 of Fig. 1.

Fig. 2 shows the elements of a solution to the problem we treat.
The upper frame shows the vertical changes of atmosphere con-
ductivity from 0 km to 150 km, this is the knee profile relevant to
paper by Mushtak and Williams (2002). The kink is clearly visible
in the altitude dependence around the knee height of 55 km. The
real part of the complex electric characteristic height introduced
by Mushtak and Williams (2002) is located in its vicinity for the
Schumann resonance frequencies. The upper part of the profile is
associated with the magnetic characteristic height of 96.5 km. The
scale height around magnetic altitude is different from that at the
electric, therefore we observe an opposite kink around 83 km. To
make it more vivid, we added the thin lines extending the ‘electric’
and ‘magnetic’ dependence.
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The lower panel in Fig. 2 shows the frequency dependence of
the wave attenuation rate Im[y(f)]. The abscissa shows the fre-
quency in Hz. Curve 2 was calculated by using formulas from
Mushtak and Williams (2002). The knee model (see Table 1) gives
the following complex electric and magnetic heights hg and hy;:

hE(f) = hKNEE + galn(f/.f}(NEE) + ln[l + (fI(NEE/f)z]

CaCp)2 + 1L [2~Cq=Cp) tan™ Fe 1)1, ®)
and
hy(F) = hy=Guln(f [ )-8 m(F)7 2 ©))

Here hynee and fynee denote the knee height and knee frequency
correspondingly. The coordinates of the lower kink of line 1 in
Fig. 2 satisfy Eq. (1). We remind that the conductivity profile has a
kink at 55 km owing to different scale heights £, and £}, above and
below the knee altitude.

In the vicinity of the magnetic height of 96.5 km, the profile
depends on the parameters h,, , fi » {m» and by, The scale height
{m is the function of frequency:

G =G+ b (LU 11F). 10)

The profile is described by a single exponential function around
the magnetic characteristic height, which is shown in the upper
panel of Fig. 2 by the thin line running down from the point
hp;=96.5 km; ¢3,=0.9895 S/m with the {3;,=4 km tilt. The upward
going thin line is the continuation of the electric part of the profile
above the knee. The propagation constant v(f) is obtained from the
regular expression in the heuristic knee model:

V(v + 1) = (kay’hy,/hg, an
or from this equation
v(f) = [1/4 + (kay’hy[hel'? — 1)2 12)

When the time dependence ~exp (+iwt) is used, the positive
sign of the root is chosen, which guaranties the attenuation of
propagating radio waves. Concluding, we should remind that the
parameters involved in formulas (8)-(12) were selected by
Mushtak and Williams (2002) to match the Schumann resonance
observations.

We use the knee profile that was introduced by Mushtak and
Williams (2002) model. Therefore, one may hope in the idealistic
case that computations by Eq. (8)-(12) give the data coincident
with the rigorous FWS of the electrodynamics problem (1)-(3).
Unfortunately, the lower panel in Fig. 2 indicates that this is not so.
The real parts of propagation constant are almost coincident when
found by the heuristic formulas and from the rigorous solution.
However, the imaginary parts (wave attenuation) are different.
Attenuation rate of the exact solution is higher than that obtained
from the formulas (8)-(12). Jones and Knott (1999, 2003) reported
a similar result, but it was relevant to the exponential profile of
Greifinger and Greifinger (1978).

5. Model Schumann resonance spectra

The propagation constants ¢(f) and the ZHSR allow calculating
the resonance fields for an arbitrary position of the observer and
the field source. To eliminate influence of the source-observer
distance on the resonance pattern, we apply the globally uniform
spatial distribution of lightning strokes (Bliokh et al., 1980, Nick-
olaenko and Hayakawa, 2002, 2014, Williams et al., 2006). This
means that independent random vertical lightning strokes occur
with the same probability at any point of the globe: w (6,¢)=1/4x.

2
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Fig. 3. Power spectra of the vertical electric field for the uniform global distribution
of thunderstorms over the Earth. Curve 1 is the solution obtained from the heuristic

formulas by Mushtak and Williams (2002) and curve 2 corresponds to the full wave
solution.

The thunderstorms form a random succession of pulses at an ob-
servatory. The delay of the arrival times is supposed to have an
exponential distribution. In this case we have a Poisson random
process, and the mutual interference of pulses disappears in the
averaged power spectrum: the individual power spectra of pulses
are summed (Bliokh et al., 1980, Nickolaenko and Hayakawa, 2002,
2014, Williams et al., 2006). The resulting power spectrum of the
vertical electric field is:

s 2n+1

<EPR > « < M > )
M “nn + 1) — v + DP 13)

2xf

n=

Here <IMc? > is the average current moment of vertical lightning
strokes supposed to be independent of frequency (white source),
n=0, 1, 2, 3... is the Schumann resonance mode number. The
series in Eq. (13) was obtained by integrating the electric field
power with the uniform probability density of the source co-
ordinates w (6,¢)=1/4r (see Bliokh et al., 1980, Nickolaenko and
Hayakawa, 2002, 2014 for details). It converges rather fast, and the
computations are simple.

We show in Fig. 3 the power spectra in relative units of the
vertical electric field calculated for the uniform distribution of
thunderstorms and the ionospheric conductivity profiles described
by the knee model. We used in computations the current moment
of the vertical dipole source <IMd?> =const=1. Spectrum 1 in
Fig. 3 was obtained for the rigorous propagation constant, while
spectrum 2 was computed by using heuristic Egs. (8)-(12).

Obviously, both spectra are close to each other, but there are
clear distinctions. The height and the width of spectral maxima are
different, especially of the higher resonance modes. The difference
of resonance power at frequencies around 40 Hz reach 20-30%,
and these arise from deviations in the wave attenuation (curves
2 and 3 in Fig. 2). Departure is small, but it can play a significant
role when the spectra of the heuristic model are applied in the
interpretations of experimental records. For example, if we try to
evaluate the spectrum of the source current moment via dividing
the observed amplitude spectrum by the heuristic model spectra
of Schumann resonance, the estimated amplitude of the source
current moments MAf) decreases with the frequency: the source
spectrum turns from the “white” into a “red” one. Concurrently,
the magnitude of the source current moment is underestimated.
The spectral departures arise due to deviations in the propagation
constant, specifically, in the wave attenuation. This effect will be-
come more pronounced in the spectra of ELF pulses arriving from
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the distant strokes. Therefore, application of spectra based on the
heuristic model in the solution of the inverse problem (Shvets
et al., 2010, Shvets and Hayakawa, 2011) will reduce the source
distances in comparison with the actual values. The inaccuracy
will deform the global distribution of thunderstorms when it is
obtained by the ELF radio tomography based on the Schumann
resonance data.

6. Discussion

The heuristic knee model was elaborated for an adequate de-
scription of Schumann resonance observations. However, the rig-
orous solution based on the equivalent vertical profile of atmo-
spheric conductivity might feebly correspond to experimental
data. We showed that deviations arise from the approximated
character of the heuristic model.

As can be seen from Fig. 2, rigorous and the heuristic at-
tenuation factors noticeably depart in the Schumann resonance
band. This result remains valid for any knee model and the re-
levant profile. Deviations are small in the real part of the propa-
gation constant, or in the phase velocity of radio waves. Therefore,
all the models more or less appropriately describe the observed
peak frequencies of the Schumann resonance spectra, as it was
noted by Jones and Knott (1999, 2003). Deviations are more dis-
tinct in the imaginary part of the propagation constant, or in the
attenuation factor.

We must remind that the original knee model by Mushtak and
Williams (2002) has never operated with the actual conductivity
profile of the air. Instead, they introduced the optimal parameters
(8)-(10) being the functions of frequency: the complex electric
he(f) and magnetic hy(f) heights together with the electric and
magnetic scale heights (f) and {u(f). These four parameters were
tuned to match the Schumann resonance data in the best possible
way (Williams et al., 2006). The choice is a delicate task, since the
original profile #(h) is independent of frequency. However, the
success in finding the optimal hg, hy, g, and £y variables does not
mean that the results will be coincident both in the rigorous and
the heuristic solutions for the v(f) dependence.

The noted deviations in the power spectra might result in un-
certainty when performing computations of Schumann resonance
by direct methods. Let us imagine that someone has constructed
the conductivity profile based on the knee model and applied it in
the direct computations. Of course, the results obtained should be
compared with the original knee model data, and the comparison
will show small, but distinct deviations. It is clear now that it is
useless to look for a bug in the direct computation algorithm:
departures arise from the approximate character of the heuristic
knee model.

From the other hand, errors in the wave attenuation reduce
accuracy of the inverse problem solution (Shvets et al., 2010,
Shvets and Hayakawa, 2011). Obviously, underestimated wave at-
tenuation will result in the overrated level of global thunderstorm
activity when derived from the experimental records. In case such
a model solution is used in the tomographic reconstruction of
global lightning activity, the amount of distant strokes will be
overestimated, etc.

7. Conclusion

The knee model by Mushtak and Williams (2002), similarly to
the exponential model by Greifinger and Greifinger (1978) does
not provide the actual height dependence of the air conductivity:
it is just a convenient instrument for calculating the appropriate
frequency dependence v(f). This is why the relevant profiles

should be applied with caution when including them into direct
numerical algorithms for computing Schumann resonance.

The spectral data computed in the knee model plausibly agree
with the Schumann resonance data. The reciprocity is reduced
when computations imply the rigorous full wave solution based
on the atmosphere conductivity relevant to the knee model. De-
viations in the real part of propagation constant (the phase velo-
city) do not exceed 1%. However, application of the profile pro-
vides overestimated wave attenuation by ~ 10%.

The modest deviations of propagation constant result in visible
departures of the Schumann resonance spectra: the heuristic knee
model provides the higher peak frequencies and the higher
Q-factors of resonance modes in comparison with the rigorous full
wave solution. This result might explain departures of the update
direct numerical solutions from the knee model.

Parameters of the heuristic knee model were developed for
fitting observational Schumann resonance data, however, these do
not grant a realistic conductivity profile of atmosphere. Additional
efforts are necessary for obtaining equally efficient s(h) depen-
dence admissible for direct computational algorithms.
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