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Investigations remains update of relationship between the parameters of global electromagnetic
(Schumann) resonance and characteristics of vertical profile of atmosphere conductivity. We
use the rigorous full wave solution of the electrodynamic problem in the spherical Earth-
ionosphere cavity and compare the results with the described in literature heuristic knee model
having a single kink. By using parameters of this heuristic model, we constructed vertical
profile of atmospheric conductivity and used it in the rigorous full wave solution for the
propagation constant of ELF radio waves. Afterwards, the power spectra were computed of
vertical electric and horizontal magnetic fields in the framework of the uniform global
distribution of the planetary thunderstorm activity. We show that conductivity profile based on
the one kink does not match the rigorous full wave solution and the subsequent computations of
the power spectra of the Schumann resonance.

KEY WORDS: Schumann resonance, atmospheric conductivity, full wave solution,
knee model

1. INTRODUCTION

Parameters of electromagnetic resonance in the Earth-ionosphere cavity depend on the
atmosphere conductivity in the altitude range from 0 to 100 km. Solution of the
electrodynamic problem in the cavity with a vertically non-uniform ionosphere might
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be built in general case only by the numerical methods, one of which is the full wave
solution (FWS) [1-5]. The inverse electrodynamic problem when we derive the vertical
conductivity profile from the observed parameters of the global electromagnetic
(Schumann) resonance has not been solved in the general formulation. Usually, a
realistic profile is selected from direct solutions constructed for the set of models: the
best fitting profile is chosen as corresponding to observations.

On the other hand, the height profile of atmospheric conductivity o(z) is not
mandatory for computing the electromagnetic fields and interpretation of observations.
It is sufficient to know the propagation constant of radio waves v (f) and the effective
height of the ionosphere above the ground, as these quantities are included in the
standard formulae for the fields together with the source current moment and the
source—observer distance [6,7]. The real profile o (z) is required when computing the
unknown propagation constant and the effective ionosphere height. The simplified
approach is often used when the height of the lower ionosphere boundary is accepted
of 60 km, and the propagation constant is calculated by using observed peak
frequencies and the quality factors of resonance peaks [1]. Thus, the standard or the
reference model was obtained [8] for the propagation constant of extremely low
frequencies (ELF 3-3000 Hz) radio waves. It summarizes substantial experimental
data collected in observatories around the world. Other models are used in the
frequency band of Schumann resonance along with the standard, and the simplest one
is the linear dependence v (f) = (f—2)/6 —if/100 [6,7]. This model was also based on
observational data, and it is sufficiently accurate. It allowed to describe correctly the
observed ELF pulsed waveforms of Q-bursts arriving from the distant powerful
lightning strokes and to accurately derive the source—observer distance [9].

2. EXPONENTIAL MODEL

Kind of a breakthrough was made in paper [10] devoted to solving the radio
propagation problem for monochromatic ELF signals. After extensive modeling, the
authors suggested a method of approximate calculation of the propagation constant at a
given frequency in the flat waveguide, provided that you know the wvertical
conductivity profile o (z). The idea was as follows.

1. The scale height dependence is constructed { (z) form the vertical profile o (2).
That is, the o (z) dependence is approximated by appropriate exponential function in
the vicinity of each height, and the local height scale £ (z) is found for this exponent.
Thus, the auxiliary profile is found of the height scale relevant to a given altitude
profile of conductivity.

2. At a fixed frequency, two characteristic heights are derived together with the
two scale heights by using functions o(z) and {(z). The conduction and the
displacement currents are equal at the first, the lower height. Since fast decrease of the
electric field amplitude begins above this height, it is called the “electric” height /g
Thus, two real parameters are found: the height /4 and the relevant scale height .
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3. The second characteristic height is found where the wavelength in the plasma
medium becomes equal to the local scale high of conductivity profile. It was shown in
[10] that magnetic field of the ELF radio wave penetrates up to this height, and the
magnetic field amplitude begins to decrease rapidly above it. This characteristic height
and the corresponding altitude scale were called “magnetic”: /1, and &y,

4. According to [10], the phase velocity of ELF radio wave depends on the ratio
hy/hg, and its attenuation factor is directly proportional to the sum (Sg/he + Syl hyg).

We will not overload our paper by equations, as a reader can easily find these in
the cited literature.

Afterwards, the approach suggested in [10] was adopted for obtaining the
propagation constant in the wide frequency band [11-15]. Various exponential
conductivity profiles are described in literatures that provide realistic models of ELF
propagation constant. Typical parameters of these profiles are: /z=~50 km and
¢r =3 km at the first Schumann resonance mode frequency f = 8 Hz (this value is
regarded as reference frequency). The magnetic characteristic height is found from
equation Ay, = hg — 28g (2kCr) = 95 km. The scale height ¢y, is taken equal to {g (single
scale model), or some other value is ascribed to it (two-scale model), see e.g. [14].

It must be emphasized that approach described is just a convenient tool for
estimating the ELF propagation constant. However, no difficulties are met when
parameters are used of such an exponential model for constructing the corresponding
function o (z). For example, one can easily build a conductivity profile in the vicinity
of the lower characteristic height by using values: f=8 Hz, hg= 50 km, and
¢e = 3 km. This will be an exponent passing through the point z = 4z = 50 km where
the air conductivity is equal to oy =2 78 g =4.444 10'° S/m (& is the permittivity of
a vacuum), and the scale height {r = 3km. In the vicinity of the upper characteristic
height of The graph passes through Ay = hg— 2 & In(2kér) = 95.6 km (k is the wave
number the free space) and oy(hy) =[4uo2 78 &' =4.410" S/m (uo is the
permeability of vacuum). Here, the curve o (z) has the scale height ¢, Obviously,
such a profile looks as a broken straight line passing through these two points in the
coordinates “height versus the logarithm of conductivity”. However, until publication
of paper [16], nobody applied such a profile in the rigorous full wave solution for
obtaining the v (f) function.

Several situations are possible for a conductivity profile derived from an
exponential model

1. Lines drawn from the characteristic heights intersect at an intermediate height
and form a kink or a “knee”. This occurs when the lower scale height exceeds the
upper one: g > Gy

2. The knee is bent in the opposite direction when {r < &),. This situation occurs on
the Saturnian moom Titan.

3. The kink might be missing, or the parallel upper and lower parts of the profile
can not cross at all, or the might intersect at altitudes contradicting to a common sense.

Nevertheless, one can easily build an equivalent altitude dependence of the
atmosphere conductivity o (z) by using parameters of an exponential model.
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Obviously, one can use such a profile in the rigorous solution of the
electrodynamic problem and check to what an extent the approximate solution [10]
matches the exact one. Such a comparison was made in [16], where the exponential
profile was used in constructing the rigorous full wave solution. It turned out that
approximate formulas predict the real part of propagation constant Re[v (f)] with the
accuracy of 1-2%. Concerning the imaginary part Im[ v (f)] (the wave attenuation), the
approximate value may deviate from the accurate one by 10—15%.

This finding attracted no significant attention, despite it means the following. Let
us assume that by using works [11-15] we have chosen the model parameters that
allow obtaining the experimental parameters of the Schumann resonance. Thus, the
approximate solution is close to the experimental observations providing a “realistic
profile”. Simultaneously, the exact solution for the same profile obviously deviates
from observations! Such a situation occurs when the electromagnetic resonance in the
Earth-ionosphere cavity is directly simulated, for example, by using the finite
dimension time domain (FDTD) method. The FDTD solution itself requires significant
resources, and it is unacceptable when the above “approximately optimal” profile o (z)
provides data noticeably deviating from observations. It is necessary to remember that
an exponential model [10] is only a convenient interpretation, but it does not provide a
description exactly corresponding to the real physical object.

3. KNEE MODEL

A further step in development of approximating heuristic models was the “knee
model” [17]. It improved accuracy of description of the resonance quality factor. The
model became popular, and its approximate nature was forgotten. In distinction from a
two-scale model, the knee model operates with four frequency-dependent parameters.
Two of them are interpreted as the height scales nearby the characteristic electric and
magnetic heights. The other two are the characteristic heights being the complex
functions of frequency. The propagation constant v (f), which is used in the calculation
of the fields, is computed using the model parameters.

Distinctions of the knee model from the two-scale exponential model is that the
magnetic height is separately introduced in addition to the two scale heights in the
vicinity of electric height. At the first Schumann resonance frequency the lower (the
greater) scale height plays the dominant role. At the higher modes, the transition
occurs to the upper (smaller) scale height. Frequency variations of all elements
included in the formula allow for more accurate description of the modal quality
factors as function of the number.

Parameters of the knee model [17] were verbally referred to a certain conductivity
profile, however, authors never showed such a profile. Only paper [18] presented the
lower part of the knee profile in the vicinity of electric height, which were compared
with the aeronomy data. Since none of the works operating with the knee model has
constructed the relevant dependence o (%), while the direct numerical solution of the
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problem using the grid technique applies the altitude profile of air conductivity, the
authors of relevant works had to invent such profiles by themselves of [19-23]. The
resonance frequencies obtained in the direct simulations usually deviate from those
values predicted by the “same” knee model. We analyze such deviations and
demonstrate that they always exist and are conditioned by the approximate nature of
the model itself.

In works applying direct modeling [20-23], the conductivity profile were used bent
in the vicinity of 50 — 60 km, which is rather close to the real situation around the
lower characteristic height of Re[4,.]. Simultaneously, presence was ignored of a
separately introduced upper characteristic height /), and the scale height {,. Thus the
conductivity profiles were obtained and applied in computations with a single kink. It
is obvious that under these conditions, obtaining data corresponding to observations
depends solely on the authors’ luck.

The exponential model profiles of conductivity having a single bending were
widely used in computations of the Schumann resonance [6,7,14,15]. These are usually
regarded as the two-scale model [14]. Thus, application of such model in the grid
technique inadvertently returns a researcher to the old-fashion two-scale profile, as the
separately postulated upper characteristic height is excluded from the model.

4. CONDUCTIVITY PROFILE, PROPAGATION CONSTANT, AND POWER
SPECTRA

Let us build the o (%) profile corresponding to the knee model, as obtaining of such a
profile was not presented in literature. The knee model operates by two complex
characteristic heights Ag(f) and Ay(f) together with two real (with zero imaginary part)
scale heights {x(f) and{y, (f) in the neighborhood of these heights. All listed values
depend on frequency, and it is possible to calculate the propagation constant with the
help of equations of [17]. It is unclear though, in what a way one can construct the real
profile o (%) independent of frequency by using the four above listed functions of
frequency.

We use here the results of work [18], where authors of the knee model [17]
analyze in detail the behavior of the air conductivity in the knee area and compare it
with the aeronomy data. An example of the classic o (%) profile was taken from [24],
and it is shown by curve 1 in Fig. 1. Curves 2 and 3 in this figure demonstrate altitude
variations of the conductivity in the day and night ionosphere, adopted from [18].
Here, the abscissa depicts the logarithm of air conductivity and the ordinate shows the
height above the ground surface.

Bending of the curves 2 and 3 in Fig. 1 is physically explained by alteration of the
prevailing charge carriers. At lower altitudes, the air conductivity is supported by ions
and ion complexes. It varies relatively slowly along the vertical direction. At higher
altitudes, the mobile free electrons dominate, their concentration rapidly increases with
altitude, and the conductivity of the medium increases rather fast. To avoid confusion,
we use in what follows the word combination “transition from ionic to electronic
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conductivity” or abbreviation TIE instead of the terms: "knee” or the “two-scale
model”. The term TIE refers only to a specific type of profile [18] discussed below.
Similar profiles were applied in the FDTD solutions [20-23], so that we will try to
establish to what an extent the model data thus obtained correspond to reality.

A TIE profile allows for accurate computing of the frequency dependence of the
ELF radio wave propagation constant. Afterwards, the power spectra of the fields
might be computed in the Schumann resonance frequency band. Instead of the curves 2
and 3 shown in Fig. 1, we use a family of conductivity profiles having the transition
from ionic to electron conductivity at varying altitude. This family is shown in Fig. 2.

The ion to electron transition is described by the two exponential functions of
altitude having different scale heights. All quantities were taken from [18]. The height
variation of air conductivity in the bottom region is conditioned by dominance of ions
and ion complexes it is equal to:

o.(z)=0, {exp[(z—hR)/g”l:l}. (1)
o;(z) is the ionic conductivity, z is the altitude over the ground surface, sz =1 km is

the reference height of ionic conductivity, op = 9.1-10" S/m is the ionic conductivity
of atmosphere at the reference height, & = 10.7 km is the scale height of vertical profile
in the area where ions prevail [18].

h, km

90 ]
80
70
60 —
50
40 -
30 ]
20
10 —
o]

FIG. 1: Height profiles of air conductivity: curve 1 is the classical profile [24], curves 2 and 3
are the TIE functions for the ambient day and night conditions [18]

Free electrons dominate from the altitude /7. Here, a new scale height appears:

o, () =c,(hyexp|(z—1 )/, ], )
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where o, is the electron conductivity, /7 is the transition altitude, £, = 2 km is the scale
height of electron conductivity.

Atmospheric conductivity at a given altitude is equal to the sum of the ion and
electron conductivities:

o(h)=o,(h)+ao,(h). 3)

Figure 2 shows the bent altitude profiles o (%) in the interval 1 <z < 100 km built
for the model with all fixed parameters except the transition altitude /7. This last varies
from 34 (lower curve) to 70 km (upper curve) with the 4 km step. Plots in Fig. 2 show
that conductivity varies relatively slowly with altitude in the interval of ion dominance.
Above the transition, electrons play a major role, and conductivity increases rapidly
with height here. Transition itself is described by a smoothly bent curve. All profiles
are coincident in the area where ionic conductivity prevails. The upper parts of the
curves corresponding to the area of electron conductivity form the vertically spaced
“parallel” lines. Electrons start dominating in progressively higher area when Ay
increases. Obviously, the lower profiles in Fig. 2 are close to the daytime ionosphere,
and the upper profiles correspond to ambient night conditions.

We used the full wave solution [2—-5] for computing the Wf) propagation constant
for each profile, and afterwards, we constructed the power spectra of the Schumann
resonance in the vertical electric and horizontal magnetic fields.

FIG. 2: Profiles with ion to electron transition at different altitudes

The lightning strokes serving as the source of the field were assumed to be
uniformly distributed over the entire globe. This allowed us to avoid the dependence of
spectral pattern on the source distance. The spectrum of the source current moment
was independent of frequency and equal to 1. The random lightning strokes are

Volume 74, Number 20, 2015



1864 Galuk, Nickolaenko, & Hayakawa

independent of each other, and their succession forms a Poisson pulsed process. This is
why the resulting power spectrum is the sum of individual power spectra of events.

Power spectrum of the vertical electric field might be found in three different
ways. The first one is computing of the following series [6,7]:

2

<|E(f)|z>z|v(v+1)| i 2n+1 @

% =0 |n(n+1)—v(v +1)|2'

Here, v is the propagation constant of ELF radio waves,  is the circular frequency,
n=0, 1, 2, etc. is the mode number.

Equation (4) is obtained by integrating the field expansion into the zonal harmonic
series with the uniform distribution of field sources over the Earth’s surface [6, 7].
Unfortunately, a similar formula cannot be deduced for the horizontal magnetic field
owing to its substantial (non-integrable) singularity at the field source. Therefore, we
used either the numerical integration by the Monte Carlo method or the direct
computation of integral over the entire Earth’s surface except a small vicinity of the
source. The result computed by using formula (4) served as a reference for evaluating
the accuracy of the Monte Carlo and the direct numerical integration. Deviations in the
resulting magnitude of the power spectra did not exceed the + 3% level, which is quite
sufficient.

The second way of computations exploits the Monte Carlo method. The power
spectra are calculated as the following sums:

s _IVvDP s P, [cos(z - 0)][ |
<|E(N) > %:sm@k ~“mem |’ )
and
) ‘ ‘j@PV [cos(;r —Ok)]
<|H(f)| >=§sm9kcos o, () , (6)

where M is the number of tests, 6 is the angular distance from the observer to the k-th
lightning stroke (a random variable distributed uniformly in the interval 0 < 6, < 7), the
factor cos@; accounts for the distribution of the arrival azimuths (a random variable
uniformly distributed in the range 0 < ¢, < 27 ), the factor sinf, accounts for the
different length of the parallels. The number of tests in the Monte Carlo algorithm was
chosen M = 2000.

The third method exploited averaging of the individual power spectra over the
random coordinates of lightning strokes, which is reduced to computation of sums
similar to (5) and (6):
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<|E(f)|2 >=ijsin0 M‘ do: 7)
0] 5 sin(vrr)
and
d 2
x — P, [cos(m - 6)]
<|Hf >=%jsm9 d0 do. (8)

5

sin(vrr) ‘

Integrals (7) and (8) were computed by the Simpson (Cotes) method. As we noted
before, the difficulty arises when computing the power spectrum of the magnetic field.
The reason is that the Legendre function has a logarithmic singularity when 6 is small
(the source vicinity), and its derivative varies as (6)"'. Therefore integral of the
magnetic field intensity diverges in spite of the factor siné in equations (6) and (8).
The singularity is significant at distance of order of the ionosphere height. The easiest
way to avoid it is integration of (6) and (8) starting from distances exceeding 200 km
from the source, or from 6= 7/10. The argumentation is valid for the Monte Carlo and
Simpson method.

After conducting statistical tests in the framework of the Monte Carlo procedure
we obtain the spectrum for a conductivity profile for the given transition height /7.
Then, this parameter was changed, and computations repeated. The height /7 varied
from 44 to 66 km with the step of 2 km. Thus, the power spectra were obtained of the
both field components for each profile of the family shown in Fig. 2 by using the
Monte Carlo method. The results are presented in Fig. 3 in the form of 2D maps built
over the “frequency — transition height” plane. Such presentation combines individual
spectra corresponding to different transition heights into the 2D survey of global
electromagnetic resonance.

Figure 3(a) shows the profile of the power spectra of the horizontal magnetic field,
and Fig. 3(b) depicts the vertical electric field data. The abscissa shows the frequency
ranging from 1 to 25 Hz. The vertical axis shows the height 47 of the ion-electron
transition. Resonance intensity is shown in arbitrary units by the dark inking, and the
lines are given of the constant levels of the field intensity.

The first, second, and the third peaks are clearly seen in the relief of the Schumann
resonance (dark areas). Maps of electric and magnetic fields have similar outline for
the uniform source distribution. The resonance frequencies obviously increase with
raising the transition height 4. However, this dependence is weak: the shift of the first
resonance peak does not exceed 0.2 Hz within the 44-66 km height range.

We evaluated the impact of TIE height on the power spectra by using the set of
resonance patterns relevant to different transition heights /7. Results of computations
might indicate what a profile matches the observed frequencies of 7.8-8.0, 13.8-14.0,
9.8-20.0 Hz etc. in the best way. Such a profile could be recommended for the further
time-consuming simulation of the Schumann resonance by using the #DTD technique.
The graphs of Fig. 3 demonstrate that none of the TIE models is appropriate for the
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direct modeling. The fact is that none of the profiles provides realistic values of the
resonant frequencies: all of them exceed the experimentally observed values. Even the
lowest transition altitude 4 = 44 km provides the first peak frequency of 8.3 Hz, which
is significantly higher than the observed values. Thus, data of paper [18] lead to the
systematic errors in the ELF propagation constant in spite their solid background. Any
of these profiles will lead to unrealistic resonant frequencies when applied in the
FDTD modeling,

AT el

Transition height, km
=AY

g.bmuuﬁu-u-o’\ac\

N

d

4 6 8 10 12 14 16 18 20 22 24
Frequency, Hz
b

FIG. 3: Power spectra for the TIE model over frequency-transition altitude plane for
thunderstorms infirmly covering the surface of the Earth: a) power spectra of the horizontal
magnetic field; b) power spectra of the vertical electric field

Plots in Fig. 4 explain that the noted deviations in the peak frequencies of the
power spectra are caused by the propagation constant of ELF radio waves. This figure
contains the 2D profiles of real and imaginary parts of the propagation constant over
the “frequency — transition height” plane. The plots in Fig. 4 are made similarly to
Fig. 3; however, instead of the power spectra the lines are shown of the constant levels
of the propagation constant. The top panel of this figure shows changes of the real part.
The numbered lines correspond to the constant levels Re[ W, ir)] = n where n is the

Telecommunications and Radio Engineering



Schumann Resonance for Conductivity Profile ... 1867

resonance mode number. When comparing Figs. 3 and 4, we readily see that maxima
of the power spectra in Fig. 3 correspond to lines Re[v] = n in Fig. 4(a). Plot of
Fig. 4(a) shows that conductivity profiles with the single kink [18] may provide a
realistic value of the resonance frequency of 8 Hz when the transition height
hr < 30 km. This definitely contradicts the physical reality.

Application is inappropriate of the conductivity profile having a single kink in the
direct electromagnetic simulations. At any rate, it does not provide the realistic peak
frequencies in the power spectra. One of the reasons is that the knee model [17]
additionally introduces the upper (magnetic) characteristic height and the relevant
scale height. This was not done in the model [18], and the magnetic height appeared
“automatically”, similarly to the ordinary two-scale height model. Apparently, this
leads to deviations in the power spectra. Thus, either model [18] requires further
elaboration or more realistic o (k) functions should be used in the direct field
computations. For example, the models might be used accounting for measurements of
the fair weather fields in the global electric circuit [25-28].

8 14 20 26 32 38 44

Transition height, km

20 26 32 38
Frequency, Hz

b

FIG. 4: Real (a) and imaginary (b) parts of ELF propagation constant in the TIE model

Figure 4(b) demonstrates another important feature of the TIE profile: the non-
monotonic variations of the attenuation factor with alterations of the transition height.
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It is especially noticeable at the higher resonance modes. The obvious maximum in the
wave attenuation around /7= 50+60 km cannot be explained by elementary physical
considerations, however, its presence might be important in the ELF radio propagation.

5. CONCLUSIONS

The above analysis shows that similarly to the exponential model [10], the simplified
methods of calculating the propagation constant of ELF radio waves with the knee
model do not allow constructing realistic vertical profiles of atmospheric conductivity.
This impedes their application in the direct methods of field computations. In
particular, the analyzed in detail model [18] does not withstand comparison with the
rigorous full wave solution and the subsequent computations of the power spectra of
the Schumann resonance.

The reason is that the TIE profile [18] is coincident with the two-scale exponential
model [14]. Distinctions of these models might be found only in the magnitude of
particular parameters. All knee models [17,19] separately introduce the upper
(magnetic) characteristic height for consistency with the experimental observations.
Thus, the number of model free parameters increases and the postulated magnetic
height lies above the values found from the Ay >hr—24:In(2k(:) [14] and
simultaneously £, > ¢&,. This modification returns the computed peak frequencies and
the quality factors of the Schumann resonance to the observed values.

Using would be reasonable of more realistic conductivity profiles in the laborious
direct computations of electromagnetic fields. For instance, the profiles already tested
in the adjacent frequency bands [25-28]. It might occur that some profiles published in
literature do not match observations of the global electromagnetic resonance. Thus,
computations by the full wave solution and the subsequent comparison of resonance
spectra allows for chosing a realistic vertical profiles of the atmospheric conductivity.
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