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Interest to the Schumann resonance phenomenon is explained by its availability to 
investigating the lower ionosphere characteristics, while the measurements of these by the 
direct methods is extremely difficult: the satellites fly at higher heights and the balloons drift at 
lower altitude. The phenomenon itself arises due to electromagnetic waves of the extremely low 
frequencies (ELF) that travel around the globe, and the global thunderstorm activity is the 
source of these waves. When solving the inverse problems, one must have the most adequate 
mathematical model of the phenomenon combined with the possibility of matching the 
experimental data by varying the model parameters in the theoretical description. The paper 
presents the rigorous methods of the ELF fields computations in the regular isotropic Earth–
ionosphere waveguide with an emphasis on the power spectra of the vertical electric and 
horizontal magnetic field components.  
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1. INTRODUCTION 

Many publications compare the experimental data of the spectral parameters of the 
extremely low frequency (ELF) noise driven by the global thunderstorm activity with 
the theoretical model computations (e.g. [1–3] and reference therein). Such a problem 
was not solved yet in the general formulation that takes into account the anisotropy of 
ionospheric plasma, the difference of ambient day and night propagation conditions, a 
real spatial distribution of the global thunderstorms, etc. As a rule, the approach 
applies an extremely simplified physical model of the Earth–ionosphere cavity that 
allows obtaining an analytical formal solution. The objective of the present paper is an 
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estimate for the error in such a solution that applies the approximate method for 
computing propagation parameters in comparison with the rigorous results.  

 
2. PHYSICAL MODEL 

We assume that natural ELF noise is caused by electromagnetic radiation from 
independent vertical lightning strokes uniformly distributed over the globe. Important 
for the ELF radio propagation ionosphere characteristics depend on the vertical 
conductivity profile i(r), which does not vary with the position of observatory. Such a 
model has the following shortcomings: the real lightning activity depends on the 
coordinates, it is concentrated in the vicinity of equator; dependence of the 
conductivity profile on the solar zenith angle is not taken into account, e.g., the “day–
night” non-uniformity; the anisotropy is ignored of the ionosphere plasma caused by 
the influence of geomagnetic field.  

3. MATHEMATICAL MODEL 

We use in what follows the spherical polar coordinate system {r, , } with the origin 
at the center of the Earth and the  = 0 axis directed to the observer.  

Formulas for computing vertical electric Er and horizontal magnetic H field 
components are the generalized form of equations (4.19) and (4.20) from paper [2]. 
These were derived for the ionosphere whose properties are described by the surface 
impedance referred to a certain “effective” waveguide height h:  
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Here, a is the Earth’s radius; 0 is the permittivity of free space;  = 2f is the angular 
frequency; Mc () is the current moment of the source (lightning stroke), it is a  
-function in the time domain, so that its spectral density is frequency-independent. 
Parameters h (the effective height of the ionosphere above the ground) and  () (the 
dimensionless complex propagation constant) depend on the ionosphere model 
applied. Quite satisfactory approximate analytic solutions exist for these parameters in 
some models of ionosphere profiles, such as flat multi-layered impedance model or the 
exponential ionosphere [1,3]. 

Dependence of the field on the angular distance   between the source and the 
observer is described by the Legendre function   cosP    of complex index . 
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Formal generalization of the equations (1) to the case of isotropic ionosphere with 
the conductivity i(r) depending only on the height r, is constructed by replacing the 
effective height of the ionosphere h by the so-called “normalizing integral” N0 (in 
general complex):  
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By using procedure described in [4], we find the propagation parameters such as 

the eigen-value ν and the normalizing integral N0 that appears in (2). 

 
4. COMPUTING PROPAGATION PARAMETERS 

Parameters ν and 0N  are found from the solution of the problem for the eigen-values ν 
of the differential operator:  
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   the boundary conditions  (a) = 0 and  () = 0.  

In this model, the ionosphere conductivity i(r) depending on the height r only, is 
a part of the expression for the relative permittivity  r . The eigen-value  is derived 
by using the iteration procedure. A proper initial approach is    ka for the zero-order 
propagation mode (normal wave).  

 
5. COMPUTING THE LEGENDRE FUNCTIONS 

The problem is not elementary of computing the Legendre functions ( )mP z having the 
complex argument z, and complex indices  and m that are used in (1) and (2). It is 
impossible to propose an algorithm being equally efficient for all possible 
combinations of parameters  and . This difficulty might be recognized in particular 
from the fundamental work [5] where more than 100 formulas are suggested for 
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expanding this function. A variant is given in [1,2] of the algorithm for computing the 
ELF fields in the spherical coordinate system, which is based on the acceleration of the 
zonal harmonic series representation. Another algorithm is used in what follows, 
which has a broader area of possible applications, in a wider frequency band in 
particular. The argument z is real, and it is denoted as z = cos   in the case, while the 
domain of its definition is the interval [1; 1]; the index  is a complex number.  

 For large   and ( )   , the asymptotic expansion is used 3.5 (5) 
from [5]:  
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One can use the expansion 6.1.47 [6] when computing the ratio of two  - functions 
used in the above equation, which have the arguments deviating by the predetermined 
constant (1/2 in our case):  
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 The hypergeometric series 3.5 (9) [5] is used in the source antipode 

neighborhood:  
 

2

(1 ) (cos ) cot an , 1;1 ; sin , 0 .
2 2

P F





 
      

               
     

 

 
 One applies formulas 3.4 (14) [5] in the source vicinity: 
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and the problem is reduced to calculation of spherical functions for the angles, 
symmetrically arranged in respect to the equator, i.e., the angle   is replaced by () 
and the convergence is improved as a result. The increasing intricacy of computations 
is explained by a necessity to calculate the Q functions in addition to functions P . 
These functions are calculated by using formula 3.6.1 (11) [5]:  
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This formula acquires the following form when m = 0: 
 

                                        
 

    2
1

1 1( ) ( ) ln 2 2 1
2 1

1 ( ) 1sin( ) 1 ,
( !) 2 2

l

l

zQ z P z
z

l zl l
l

    

  






          

          


 

 
Simultaneously, the logarithmic singularity at the source point ln[(z+1)/(z1)] is 
written explicitly in this representation. One can calculate the function  (+1) from 
3.6.1(11) in [5] by using equation 6.3.18 [6]:  
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6. COMPUTATION OF RESULTANT NOISE 

The concept of energy spectral density is widely used in radio, which is introduced as a 
portion of the signal energy brought in the 1 Hz bandwidth per 1 second. In actual 
practice to ensure the stability of the results, the much longer accumulation times are 
used than 1 second, while the result obtained is divided by the accumulation period. 
Integration in time might be replaced by computing the modulus quadrate of the 
corresponding Fourier component of the signal when the length of the signal time 
realization is 1 second.  
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To compute the energy spectrum of natural noise produced by the global 
thunderstorm activity, one has to specify in addition to the Mc() parameter (being the 
average the current moment of the lightning strokes) the average number of lightning 
strikes L occurring in a second on the whole Earth. Estimates of these values might be 
found in [2]: Mc() 105 A m s and L  100 s–1.  

Since the lightning strokes occur at uncorrelated moments of time, one has to sum 
the power spectra of individual strokes instead of direct summing of fields arriving 
from the globally distributed lightning discharges. Thus, the problem of computing the 
noise power is reduced to the calculation of the integrals of the functions |Er|2 and |H|2 
given by formula (2) over the surface of the Earth.  

One can implement computing of these integrals in three different ways: to sum 
the zonal harmonic series; to use the quadrature formulas for numerical integration; or 
the Monte Carlo method. Each method has its advantages. 

 

6.1 Monte Carlo Method of Statistical Tests 

This method seems to be the most natural, because it actually emulates a realistic 
thunderstorm activity. It might be readily generalized to the case of the real 
distribution of lightning strokes in their coordinates, waveform, and amplitude.  

The following sums are computed in the Monte Carlo method:  
 

   22 2
2

22 4 2 2 0
0

cos( ) | ( 1) |( ) ,
4 sin( )

c
r

M

PL M
E f

M a N
    

 


       (4a) 

 

   22 1
2 2

22 2 0

cos( )
( ) cos ( ) ,

sin( )4
c

M

PL M
H f

M a N




 





       (4b) 

 
where 2

rE   and 2H   are the sought average power spectra of vertical electric 
and horizontal magnetic components of EM noise;  and  are the angular coordinates 
of lightning strokes relative the observation point (the drawing random variables); the 
cos factor accounts for the azimuth between the propagation path and orientation of 
the horizontal magnetic antenna core (it is used only in the magnetic field 
computations); M is the number of statistical tests. 

The random numbers with a given distribution function are obtained in the Monte 
Carlo method from the pseudo-random numbers, uniformly distributed in the interval 
[0; 1]. These are regarded in what follows Random. Coordinates of the points 
uniformly distributed over the surface of a sphere are given by formulas: 
  Random2 and   arсcos(2Random-1).  

One can also use a slightly modified formula when drawing the lightning strokes:  
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  Random2,   2 Random. Formulas (4) and (5) deviate by the way of the 
coordinate   drawing, by presence of the sin factor, which accounts for varying 
length of parallels at different latitudes, and by the coefficient 2/ compensating the 
difference of the surface area on the sphere of the unit radius (4) and a rectangle 
having the random ,  coordinates ( 2 22). The cos2 term in (5b) is replaced by 
1/2 since the relationship ∑cos2(2 Random)  M/2 is valid.  
 

6.2 Direct Numerical Integration 

The formulas for the numerical integration of the noise power are similar to 
expressions used in the Monte Carlo method, only, the summation over the random 
events must be replaced by integration over the surface of the sphere 

When deriving the appropriate formulas, one should take into account the 
following: the rate of the global lightning strokes in 1 s is equal to the parameter L, 
therefore, the median current moment density per 1 km2, is equal to LMc()/S where S 
is the total surface of the Earth 4a2. 
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Element of the surface is equal to 2 sin ,dS a d d    and the surface integration is 

split into integration over the  and the  variables. The integral over  is calculated 
using formula 2d  , 2cos ,d    so that expressions (6) take the form:  
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The additional factor of 1/2 in the magnetic field component takes into account the 
integral of cos2()).  

Integrals might be computed using any quadrature formula, in particular, by the 
Simpson (Cotes) method. Difficulty arises when calculating the power of the magnetic 
noise component <H

2>. It is caused by a logarithmic singularity of the Legendre 
function in the vicinity of the field source while its derivative with respect to the   is 
included into expression for the magnetic field being equal to 1/. Since we integrate 
the square modulus of the field component, the magnetic integral diverges in spite of 
presence of the factor sin in the integrand. It is clear that no infinity is met in the real 
records of magnetic field. The possible explanation for this fact is the shortage of the 
model of uniform distribution of lightning strokes over the surface of the globe. Global 
thunderstorms are centered mainly around the equator [1,2], and the observatories are 
usually placed at the middle latitudes where thunderstorms occur less frequently. 
Besides, fields from the local thunderstorms (closer than 100 km) are almost 
independent of the ionosphere properties, simultaneously they can overload the input 
circuits of receivers. This is why signals from the nearby lightning are excluded from 
the processing in real experiments.  

On the other hand, equations (1) and (2) based on the zero-mode approximation 
become invalid when the source–observer distance is as small as a few ionospheric 
heights (being N0 in our notation), i.e., closer than 100200 km. The easiest way of 
avoiding this problem is eliminating the source vicinity from the integration. The same 
consideration is valid when using the Monte Carlo method. An expulsion from the 
integration procedure of the area having the 200 km radius does not reduce 
substantially the reliability of obtained results, as the excluded area occupies less than 
0.03% of the complete Earth’s surface. 

 

6.3 Summation of Zonal Harmonic Series 

The method is based on the Dougall decomposition (see 3.10 (6) in [2]) of the 
Legendre function into a series of the Legendre polynomials:  
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Since we are interested only in the Legendre function P(cos) involved in equation 
(7a), we can put the upper index  = 0 in the above formula and obtain the presentation 
sought:  
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After substituting equation (8) into (7a) and raising the expression for P(cos) to 

quadrate, one obtains the dual infinite series over the indices of Legendre polynomials. 
If we recall the orthogonality of the Legendre polynomials  
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we obtain after integration with respect to  an infinite series over the matching indices 
n only: 
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As it was already mentioned, the eigen-value of the zero-mode in the Schumann 

resonance frequency band (below 50 Hz) is approximately equal to   ka that does not 
exceed 7. Therefore, the series (9) converges rather fast in the entire frequency range.  

Formula (9) might be also obtained by substituting into (7a) the representation for 
the product of two Legendre functions 3.10 (8) [2]:  
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and setting   0,   0, and θ   .  

Summation of the zonal harmonics representation (9) is possible only for the 
power of vertical electric field component of natural noise. Similar series is divergent 
for the energy spectrum of the horizontal magnetic field component.  

 
7. COMPARISON OF DIFFERENT METHODS 

We must acknowledge that results obtained in the three different ways may slightly 
deviate when compared with each other. One must also specify the desired accuracy of 
computations in every algorithm, and the time of computations will be inversely 
proportional to the given precision:  
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 The accuracy of computations by the Monte Carlo method is inversely 
proportional to the number of statistical tests M; this is a rather weak convergence: 
usually, it takes a few tens or hundreds of thousands of drawings.  

 When implementing formulas (7), the accuracy of computations depends on 
the particular method of numerical integration: for the most commonly used Simpson 
method, it is proportional to the fourth power of the integration step s4.  

 General term of zonal harmonics series (9) that determines accuracy of 
computations is inversely proportional to the third power of numbers n3, which 
guaranties the rapid convergence.  

The computational results obtained by the Monte Carlo method (4), (5) and of the 
numerical integration (7) depend both on the accuracy of the Legendre functions 
computations and on the size of the source area, which is excluded from the 
integration.  

The results obtained by summing the zonal harmonic series should be considered 
as the most reliable from the most general considerations. However, these imply 
computations of the noise power in the vertical electric field component and only in 
the model of thunderstorms uniformly distributed over the globe. The rest of methods, 
in spite of their greater complexity, are deprived of this limitations.  

When comparing spectral data, we used the ionosphere conductivity profile i(h) 
shown in Fig. 1. 
 

 

FIG. 1: Profile of the ionosphere conductivity 

 
Figures 2 and 3 present energy spectra (in arbitrary units) of the vertical electric 

and horizontal magnetic field components. 
The plots do not depart qualitatively when computed by using different methods, 

therefore we show only single line that corresponds to one of the methods. In 
implementation of these methods, we specified the following parameters:  

– The relative accuracy of computations of Legendre functions is 105. 
– The accuracy of the summation of zonal harmonics series is 105. 
– The number of integration steps in the method of Simpson is 400. 
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– The radius of the area excluded from the integration in the vicinity of the source 
is 200 km. 

 

 

FIG. 2: Power spectrum of vertical electric field components 

 

 

FIG. 3: Power spectrum of horizontal magnetic field component 

 
Impact of the drawing number in the Monte Carlo method on the computation 

accuracy is demonstrated in Figs. 4 and 5. The bold line here presents the result of 
direct integration; dashed lines show three variants of Monte Carlo computations for 
the drawing number of 10.000; solid line is the Monte Carlo method with 100.000 
events. 

It is obvious that in spite of the relatively casual appearance of the results obtained 
by the Monte Carlo method, the output accuracy is increasing with the number of tests, 
although the relevant growth is slow, but sufficient. The computation accuracy in the 
magnetic component of ELF noise power is lower than in the electric component. This 
apparently might be explained by the fact that this field is expressed via derivative of 
the Legendre function having a stronger singularity at the source.  
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FIG. 4: Accuracy of the power spectrum computations of the vertical electric field components 
|Er( f )|2 (relative the summation of zonal harmonic series)  
 

 

 

FIG. 5: Accuracy of the power spectrum computations of the horizontal magnetic field 
component |H( f )|2 (relative the direct integration)  

 
8. CONCLUSIONS 

We have demonstrated that application of modern computer technology and rigorous 
numerical methods allows calculating the propagation characteristics and the fields, 
which are no more intricate in realization than the approximate analytical methods. A 
further improvement in correspondence between the theory and experiment might be 
expected in the framework of more complicated propagation models accounting for the 
ionosphere irregularity “day-night” and the anisotropy. The method of two-
dimensional telegraph equation [7] is among the most promising methods for solving 
such complicated problems.  
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