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Abstract

An intriguing and rare gravity wave event was recorded on the night of 25 April 2017 using a multi-
wavelength all-sky airglow imager over northern Germany. The airglow imaging observations at
multiple altitudes in the mesosphere and lower thermosphere region reveal that a prominent upward
propagating wave structure appeared in O(*S) and O, airglow images. However, the same wave
structure was observed to be very faint in OH airglow images, despite OH being usually one of the
brightest airglow emissions. In order to investigate this rare phenomenon, the altitude profile of the
vertical wavenumber was derived based on collocated meteor radar wind-field and SABER temperature
profiles close to the event location. The results indicate the presence of a thermal duct layer in the
altitude range of 85-91 km in the south-west region of Kuhlungsborn, Germany. Utilizing these
instrumental datasets, we present evidence to show how a leaky duct layer partially inhibited the wave
progression in the OH airglow emission layer. The coincidental appearance of this duct layer caused to
exhibit as the faint wave front in the OH airglow images compared to O(*S) and O airglow images
during the course of the night over northern Germany.

Keywords: Airglow Imager, MMARIA meteor radar, Gravity Waves, Mesospheric Temperature

Inversion, Thermal Ducting
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1. Introduction

Multi-wavelength nighttime all-sky airglow imaging has become a widely used technique to retrieve
valuable information of atmospheric gravity waves (GWs) as well as the dynamics of the mesosphere
and lower thermosphere (MLT) region. GWs play a key role in the upper atmospheric dynamics because
of their inherent properties of transferring momentum and energy from lower atmospheric regions to
the middle and upper atmosphere (Fritts and Alexander, 2003). However, the ducting inhibits the
vertical propagation of GWs and confines the major flow of wave energy and momentum to a rather
limited altitude region (Chimonas and Hines, 1986). The earlier imaging studies using airglow
emissions originating in the MLT region revealed different types of dynamical events like quasi-
monochromatic GWs, ripples, mesospheric fronts (Taylor et al. 1995; Walterscheid et al., 1999; Hecht
et al., 2001; Smith et al., 2003; Makhlouf et al., 1995; Bageston et al., 2011; Lakshmi Narayanan et al.,
2012; Sarkhel et al., 2012; 2015a; 2015b; 2019; Hozumi et al., 2019; Mondal et al., 2021).

The characteristics and morphology of gravity wave events have been investigated for decades.
Depending upon the characteristics and background conditions, the evolution of GWs in the atmosphere
can be rather different. Large-scale waves (several tens of kilometers horizontal wavelength) can easily
reach to the MLT region depending on their phase velocity compared to the background mean flow
whereas small-scale (a few tens of kilometers horizontal wavelength) waves are more susceptible to
thermal and Doppler ducting (Walterscheid et al., 1999). The evolution of GWSs and their interaction
with the mean flow have been extensively studied using the linear theory of GWSs. The waves can exert
a significant amount of drag in the mean flow of the atmosphere and thereby play an important role in
the middle atmospheric circulation. In addition, waves can break due to occurrence of neutral
instabilities into and generate secondary waves or ripple type structures (Vadas et al., 2018; Becker &
Vadas, 2018; Heale et al., 2020). Large-scale GWSs can interact with the mean flow and generate one of
the most puzzling mesospheric phenomena known as the mesospheric fronts (Dewan and Picard, 1998,
2001; Smith et al., 2005 and references therein). Mesospheric fronts can also propagate over long
horizontal distances and therefore act as an efficient mechanism for transferring energy and momentum
over long ranges with negligible energy loss in the atmosphere (Medeiros et al., 2018). Therefore, GWs
propagation through a region of thermal/Doppler ducting can explain some of the properties of
mesospheric fronts like the long-distance horizontal propagation.

The inhomogeneities in the temperature and wind field are responsible for the static/convective
and dynamic instabilities respectively in the atmosphere which affect the wave propagation. In
particular, vertical gradients in temperature and wind field give rise to numerous interesting phenomena
like wave reflection, wave ducts or waveguides in the MLT region. GWSs can be ducted in a region
where the vertical wavenumber (m) of the GWs is real (m? > 0) and the region is situated between two
atmospheric altitude regions of imaginary vertical wavenumber (m? < 0). Once the GW falls into this

ducted region, it gets trapped because of repeated reflection from the bottom and upper layer
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(reflectance layers). However, the wave can freely propagate in a horizontal direction. If there is a
reflection layer at a certain height, GWSs can get reflected from this layer. The ducted wave is called
thermally ducted or Doppler ducted (or both) according to whether m? < 0 arises predominantly from
the temperature gradient or the vertical shear of the horizontal wind (Walterscheid et al., 1999). A
thermal duct is isotropic and will support ducted wave activity with any orientation, whereas a Doppler
duct is very sensitive to the wave orientation (Fritts and Yuan, 1989). In this paper, we present a case
study of a mesospheric wave structure using a multi-wavelength all-sky airglow imager and
simultaneous measurements of 2D horizontally resolved wind-field in the MLT region over northern
Germany. Here, we present a first case study with the MMARIA meteor radar network in Germany
(Stober an Chau, 2015; Stober et al., 2018) and co-located all-sky airglow imaging observations
combining the available horizontally resolved wind and airglow information to infer the intrinsic GW

parameters.

2. Experimental Techniques

A multi-wavelength all-sky airglow imager was procured from Boston University, USA and installed
at Leibniz Institute for Atmospheric Physics, Kiihlungsborn (54.11°N, 11.77°E), Germany. The imager
has been operating since November 2016. The imager design is similar to an all-sky imager that is being
operated at Padua Observatory, Asiago (Smith et al., 2017). The details of the imager and a few results
are available in Vargas et al. (2021). The imager features an Andor back-illuminated bare-CCD camera
with 1024 x 1024 pixels resolution and a 16 mm fish-eye lens that allows a maximum field of view of
180°. On the night of 25 April 2017, the images were binned 2 x 2 (in real time) in order to achieve
better signal-to-noise ratio. The system is equipped with a temperature-controlled filter wheel that can
record OH broadband emission (695-1050 nm) with a notch at 866.0 nm, Na emission (589.3 nm), O
emission (866.0 nm) and O(*S) emission (557.7 nm) in the MLT region. The cycle of the filter wheel
operation  (with  exposure  time) is: OH: 27 Seconds = 866.0 nm: 134 Seconds =

557.7 nm: 260 Seconds = 589.3 nm: 263 Seconds. Based on rocket measurements, it has been
reported that these airglow emissions originate from layers of 8-11 km full width at half maxima
(FWHM) or thickness with centroid height of around 86, 91, 94 and 97 km, respectively (Watanabe et
al., 1981; Ogawa et al., 1987; Baker and Stair, 1988; Gobbi et al., 1992; Mende et al., 1993; Hedin et
al., 2009). In addition, the imager also records thermospheric emission O(*D) (630.0 nm) from ~250
km altitude with around 40 km layer thickness (Sobral et al., 1992). The imager is also equipped with
a background filter in which the nightglow is minimal. This filter has a central wavelength of 605.0 nm
and is used for photometric calibration of the images. In our investigation, we have used only emission
originating from the MLT region. The bandwidth of the 589.3 nm, 866.0 nm, and 557.7 nm filters is
2.0 nm whereas, the OH filter is a broadband (695-1050 nm) with a notch at 866.0 nm in order to

exclude the O emission line completely. Hence, there is no contamination of OH broadband emission
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from other mesospheric lines (557.7 and 589.3 nm). The nearest lines of OH (X°II) are at P1(6) and
R(7,3) (854.9 and 877.1 nm respectively) that are quite far-off from the O, emission line (866.0 nm)
(Chamberlain, 1961). In addition, the wave signatures in the OH (when detected) and O images differed
in both morphology and phase. Hence, we are confident that no significant broadband OH occurred
within the 866.0 nm filter bandwidth. The integration times for the 589.3 nm, 866.0 nm, and 557.7 nm
images were 120s and 15s for the OH filter.

The second data set used in this study is based on a meteor radar network operated in northern
Germany known as MMARIA (Multi-static, Multi-frequency Agile Radar for Investigations of the
Atmosphere) (Stober and Chau, 2015). In this study, we used the Juliusruh meteor radar (54.6° N,
13.3°E) (e.g. Hoffmann et al., 2010) with a transmit power of 30 kW operated at 32.55 MHz, the Collm
meteor radar (51.1°; 13.0°E) (e.g. Jacobi et al., 2007) with a transmit power of 15 kW operated at 36.2
MHz and a three multi-static passive systems installed at Kihlungsborn and Juliusruh. The bistatic
meteor detections from transmissions originating in Juliusruh and Collm are received
interferometrically at 32.55 MHz and 36.2 MHz, respectively. The horizontally resolved 2D wind-field
is based on the packed retrieval algorithm presented in Stober et al. (2018). Further, we restricted the
domain size to be slightly larger than the field of view of the airglow imager. The temporal resolution
of the 2D wind-field was 1 hour with a vertical resolution of 2 km at altitudes between 80 and 100 km.
The spatial grid for horizontally resolved winds is chosen to be 30 km x 30 km parallel to the Earth’s
surface. All coordinates and radial velocities are corrected for projection errors using the WGS84 model
(National Imagery and Mapping Agency, 2000). An initial validation of the 2D wind-field retrievals,
and more details of the technigue, can be found in Stober et al. (2018, 2021).

Another data set is the altitude profile of temperature that has been obtained from the SABER
instrument onboard TIMED satellite (Data source: http://saber.gats-inc.com; v2.0; Level 2A). The
retrieval of the ambient temperature at a given altitude is carried out using 15 pm emission from CO,
molecules in the atmosphere. The location of the SABER measurement is less than 150 km from the
south-west corner of the imager FOV from where the wave entered. The uncertainty in the SABER
temperature retrievals is around +3 K at 80 km, £8 K at 90 km, +1-2 K below 95 km and +4 K at 100
km in the midlatitudes (Garcia-Comas et al., 2008).

Figure 1 reveals the map of northern Europe where it shows the location of the multi-
wavelength airglow imager at Kihlungsborn, the Collm and Juliusruh meteor radar and the receiver
stations at Juliusruh and Kuhlungsborn. The yellow box is the maximum horizontal coverage of the
airglow imager in the MLT region. The red asterisks are the SABER temperature measurement
locations. It is to be noted here that SABER 1 measurement location is quite far from the imager field
of coverage whereas, the measurement location of SABER 2 is close to the edge of the horizontal

coverage of the airglow imager.

3. Data Analyses
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In order to retrieve scientific information, the raw images need to be processed. The standard method
of image processing including geospatial calibration, star removal and unwarping are available in the
literature (Garcia et al., 1997; Mondal et al., 2019 and references therein). In most situations, the
unwarped images are noisy and not very clear. It can be verified from the Figures 2-5 (a-f) that the
unwarped images are noisy for all the airglow filters. For the derivation of the wavelength, apparent
periodicity and phase velocity of the perturbation from the intensity fluctuation, the unfiltered unwarped
images may not be suitable. Therefore, in order to enhance the intensity perturbation by suppressing the
noise, the 2D FFT filtering techniques have been adopted from Mondal et al. (2019). In this filtering
technique, Savitzky—Golay (SG) and Gaussian window sizes are crucial. These window sizes are
optimized for each airglow emission filter which is discussed in Mondal et al. (2019) in detail. In the
present case, the window size of SG-filter is taken as 400 pixels for OH, 350 pixels for 589.3 nm, 300
pixels for 866.0 nm, 300 pixels for 557.7 nm filter. On the other hand, the Gaussian filter has standard
deviation (o) of 20 pixels for OH, 20 pixels for 589.3 nm, 15 pixels for 866.0 nm, 15 pixels for 557.7
nm filter. Here, 1 pixel on the airglow images is nearly equal to 1.16 km. It may be noted that the wave-
like features in the filtered unwarped images are enhanced (shown in subplots of g-I of Figures 2-5).
These filtered unwarped images are utilized to derive the apparent phase velocity and horizontal
wavelength of the wave structure. In order to proceed further, a line is overlaid along the direction of
propagation for the particular number of consecutive images in which the wave structure has been
detected visually. This arrow (shown in subplots of g-1 of Figures 2-5) represents the wave vector of
the structure. From the intensity variation along the line of propagation, the apparent phase velocity and
horizontal wavelength of the observed structure have been derived. The detailed methodology is
available in Mondal et al. (2019).

In order to investigate the vertical propagation characteristics of the observed wave structure
through the OH, Na, O, and O(*S) airglow emission layers, the altitude variation of squared vertical
wavenumber (m?) needs to be computed. Following Nappo (2002), the relation for the vertical
wavenumber can be expressed as:

Nz U, 1

k- — (1)

2 —
m =Tz ek T

Here, ky (2n/4y) is the horizontal wavenumber (A is the horizontal wavelength), H is the scale height,
U, is the projected wind along the wave vector, U, ' is the vertical wind shear, c is the observed phase
velocity and ¢ is the intrinsic phase velocity (¢ — Uy). The values of H = 5.4 km and ky = 0.084 km™
(Ax = 75 km). The altitude profile of the projected wind along the wave vector has been calculated from
the altitude variation of the 2D horizontally resolved wind field within the observed structure. In
addition, the 2D wind field at the centroid height of each airglow emission are overlaid on the filtered
unwarped airglow images (shown in subplots of g-l1 of Figures 2-5). This approach gives us the

opportunity to calculate the horizontal wind velocity within the observed wave structure more precisely.



185

190

195

200

205

210

215

4. Results

Figures 2-5 depict all-sky airglow imaging observations at four different airglow emissions
originating at the MLT region along with the MMARIA 2D horizontally resolved wind-field
measurements over northern Germany during the cloudless and moonless night of 25 April 2017.
Figures 2(a-f) show the sequence of unwarped images observed in O(*S) airglow emission. The central
dark spot appearing in every all-sky airglow image is due to the van Rhijn effect; a combination of the
finite width of the emission layer and the variation of the line of sight through the layer with increasing
zenith distance. Figures 2(g-1) depict the corresponding 2D FFT filtered images overlaid on the
MMARIA horizontal 1 hour averaged wind field in two dimensions at the centroid height of O(*S)
airglow emission in the MLT region. In a similar manner, the upper horizontal subplots in Figures 2-4
represent the sequence of unwarped images observed in Oz, Na and OH band emissions, respectively.
The bottom subplots represent their corresponding 2D FFT filtered images overlaid on the MMARIA
2D horizontally resolved wind field at the centroid height of the respective airglow emissions. The
winds are analyzed as an average along the propagation path of the wave fronts. The spatial wind
retrievals imply a large spatial coherence of about 60 km (the correlation length is set to include the
next grid cell) and a temporal correlation of about 30 minutes. Thus, a certain degree of coherence is an
essential part of the wind analysis for this case. Furthermore, due to the thermal wind balance, changes
in the vertical temperature profile led to corresponding changes of the winds at the different altitudes.
The spatial variability of the wind field is also indicated by the bending of the wave fronts found in
Figures 2 and 3, whereas the wind fields remain stable at the altitude of the OH emission line presented
in Figure 5. We can observe the existence of a front-wall with small undulation wave structure in all
the filters. The horizontal propagation of the observed wave structure is from south-west to north-east
and entered within the field-of-view (FOV) of the imager over northern Germany. The wave structure
entered at the south-western edge of the FOV of the imager at around 21:35 UT. Although we have
shown the sequence of images (Figures 2-5) from 21:56 UT onward when the wave structure is fairly
visible in the south-west corner of the imager FOV. The wave structure is very prominent in both O(*S)
and Oz images. On the other hand, it is very faint in Na and OH images. It is interesting to note that the
measurement location of SABER 2 falls in the path of the propagation of the wave structure.

In order to investigate the vertical phase propagation of the wave structure, the intensity of
slices of O(*S), O, and Na images were plotted at a given time in the direction of propagation and they
have been horizontally shifted based on its deduced phase speed of the leading front, to account for the
acquisition time differences between each image. The observed mean phase velocities deduced from
0O(*S), 02 and Na images are 50.2 + 4.8 m/s, 46.6 + 4.2 m/s and 44.5 + 9.7 m/s respectively. Since the
wave structure appeared to be very faint in the OH images, observing the GWs in these images becomes
practically impossible. A key element in the analyses is the horizontal vs. altitude intensity plot to

determine the vertical phase propagation of the observed GW similar to Smith et al. (2005). The green,
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red and orange lines in each subplot of the Figures 6 (a-d) depict the intensity variation of O('S), O,
and Na airglow emissions respectively along their line of propagation vector considering the large-scale
vertical wind shear and, thus obtaining the intrinsic phase progression, which is actually needed to
distinguish the vertical propagation direction. The slices have been separated vertically in order to
represent the assumed relative vertical separations of the emission layers in the MLT region corrected
for the observed phase speed of the wave. We can clearly observe that the intrinsic phase in the O
airglow (centroid emission height: 94 km) is always lagging O(*S) airglow (centroid emission height:
97 km). Thus, the lagging phase front in O, airglow, which is in the lower height, as compared to the
O(*S) airglow indicates that the phase front appeared in O(*S) and then O airglow emission layer.
Therefore, the vertical phase progression of the wave structure is downward. Hence, based on this
information, we can conclude that we have captured an event of an upward propagating wave in O(*S)
and O airglow emission layers on the night of 25 April 2017 over northern Germany. However, the
intrinsic phase in the Na airglow (centroid emission height: 91 km) appears to lead the O, airglow,
indicating that the vertical phase progression of the wave structure is different in the Na airglow
emission layer as compared to O(*S) and O, airglow emission layers. In addition, the Na airglow
intensity variation also seems to be different at larger horizontal distances. However, we are unable find
out the cause based on the present dataset.

In order to find the vertical propagation characteristics of the wave structure, the derivation of
the altitude profile of m? is required with the knowledge of the vertical temperature profiles and the
projected wind along the wave vector. In addition, it is clear from Equation (1) that we also need to
calculate the intrinsic phase velocity of the wave structure. Hence, the horizontally spatially-averaged
projected wind profile within the region of wave structure and along the wave vector have been
calculated and the hourly values for 21:30-22:30 UT are shown in Figure 7a. Figures 7b and 7d depict
the altitude profiles of SABER temperature along with the measurement uncertainty plotted as
horizontal error bar over the SABER 1 and 2 locations (refer to Figure 1) respectively. It is to be noted
that the SABER temperature measurements were carried out around 1 hour prior to the event. The
change in the temperature within this short time scale is mainly due to wave perturbations, e.g.,
atmospheric tides. However, one hour is still a short enough time scale to assume that the change in the
background temperature is very small and, thus, is not going to affect the analyses. In addition, we
didn’t observe any wave activities before and after the event. Hence, there will not be any significant
differences in the temperature and this temperature profile has been used to calculate the altitude profile
of m% Following Equation (1) and based on the SABER temperature profile, imager, and MMARIA
projected wind profile measurements, we have calculated the altitude profile of m?. Figures 7c and 7e
are the altitude profiles of m? along with the proportional error plotted as horizontal error bar over
SABER 1 and 2 locations respectively. Both m? profiles have been derived using the same projected
wind shown in Figure 7a. Itis interesting to note that the temperature profile doesn’t show any inversion

at the SABER 1 location. However, we can observe the mesospheric inversion layer (MIL) at the
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SABER 2 location. The m? profile at SABER 2 reveals that a duct region exists in the altitude range
between 85-91 km where positive m?is vertically sandwiched between a negative m? value (at 91 km)
and a less positive value (at 85 km). In order to find the nature of the duct layer, we have analyzed the
contribution of each term of the dispersion relation (Equation 1). The contribution terms in m? profiles

are like ~89.5 % from the buoyancy term (thermal gradient) (1;1_22) ~6.5 % from the wind shear term

(Z—’Ié) ~1.9 % from squared of horizontal wavenumber k2 and ~2.1 % from scale height term (ﬁ)
The contribution suggests that the buoyancy term (thermal gradient) dominates in the m? profile whereas
the wind shear doesn’t play any significant role. Therefore, the duct layer observed in the MIL region
at 85-91 km is a thermal duct by nature, dominated by the thermal gradient of the MIL which is observed
merely 1 hour before the appearance of the wave fronts in the south-west region of imager FOV. It is
worth mentioning that the observed MIL is close to the edge of the horizontal coverage of the airglow

imager and coincide with the path of the propagation of the wave structure (refer to Figures 2-5).

5. Discussion

As discussed above, the multi-wavelength all-sky airglow imager installed at Kiihlungsborn, Germany
can record images at four airglow emissions originating from the MLT region of the Earth’s atmosphere.
Our main objective is to combine data from the all-sky imager to investigate the spatial information of
the waves in the MLT region and corroborate with the 2D horizontally resolved wind field at different
altitudes using MMARIA. The optical and radio measurements in 2D gives us a unique opportunity to
investigate intriguing wave events in the MLT region over northern Germany. We have captured a
front-like wave structure during the all-sky airglow imaging observation on 25 April 2017 at O(*S), Oy,
Na and OH airglow emission layers. As discussed in the Results section, we captured an upward
propagating wave structure and it appeared to be very prominent in both O(*S) and O, images
propagating from south-west to north-east. On the other hand, it is faintly observed in both Na and OH
images. As the Na airglow is a relatively weaker emission compared to O(*S) and O, airglow, it may
be the plausible reason for observing faint structure in Na airglow images. Hence, it is expected that
any wave structure observed in that filter may not be prominent due to poor signal-to-noise ratio.
However, it is well-known that the OH airglow emission is much brighter than O, and O(*S) emissions
in the MLT region and has been widely used for the investigating of GWs (e.g. Taylor et al., 1995;
Yamada et al., 2001; Mukherjee, 2003; Li et al., 2005; Yue et al., 2010). Hence, any wave structure
should be very prominent in the OH airglow images. In fact, clear signatures of wave activities were
observed on other nights in OH airglow images over northern Germany. However, the wave structure,
on 25 April 2017, can barely be observed in the OH airglow images. The detailed analyses of the

plausible cause behind the occurrence of this rare event have been carried out and discussed below:

5.1 Reduction in the OH airglow emission intensity
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As it is mentioned above that the OH airglow emission is normally a strong emission for the
investigation of dynamics in the MLT region. However, reduction in the overall density of H atoms and
O3 molecules, that are reacting to form the excited OH molecule, could have led to the weak OH airglow
emission on that night. Consequently, the wave structure observed in the OH filter may not appear as
prominent as it should be, due to poor signal-to-noise ratio. In order to explore the possibilities, we have
carried out comparison of the SABER measured altitude profiles of H atomic, Oz molecular densities
and OH Volume Emission Rate (VER) profiles. The VER profiles (both at 1.6 and 2.0 pum emissions)
at SABER 2 measurement location on the night of 25 April 2017 reveal that the thickness of the OH
emission layer is ~10.2 km. The SABER measurements indicated that the centroid height of OH airglow
emission occurred near 87 km on that night. We have also looked into OH VER profiles for £2 nights
from nearby locations during 20-21 UT (figures not shown). We found that the OH emission layer
thickness is similar (10.03 £ 0.6 km). Hence, we believe that the small changes in the thickness will not
have any significant impact on the observability of the wave in OH airglow emission layer. In addition,
we found that there are no significant differences of the density of H & O3 and OH VER profiles. Hence,
the fact that we observed the faint wave structure in the OH airglow image is not due to the reduction

in the overall intensity level of OH airglow emission on that night.

5.2 Cancellation of waves in the OH airglow emission layer

Based on model calculation, Liu and Swenson (2003) reported that for vertically propagating GWs, the
amplitude of airglow perturbations observed using ground-based measurements is larger for longer
vertical wavelength, due to the smaller cancellation effect within each layer. This cancellation factor
was introduced by Swenson and Gardner (1998) for OH airglow to relate the observed vertically-
integrated airglow intensity perturbations to the wave amplitudes. This cancellation factor causes a GW
that may not be observable in an airglow emission layer, when observed using ground-based airglow
instruments, if the vertical wavelength is less than the FWHM. (e.g., Swenson and Gardner, 1998, Liu
and Swenson, 2003, Vargas et al, 2007).

Based on the sounding rocket measurements, it has been reported that the OH, Na, O, and O(*S)
airglow emission layers are originating in the MLT region with FWHM of 8-10 km (Watanabe et al.,
1981; Ogawa et al., 1987; Baker and Stair, 1988; Gobbi et al., 1992; Hedin et al., 2009). On many
occasions, these in-situ rocket borne measurements reveal that the FWHM of the O, emission layer is
more than the one of OH whereas, the FWHM of Na airglow layer is nearly comparable with that of
OH and O,. However, in general, the FWHM of O(*S) airglow layer is 1 or 2 km less compared to the
OH and O airglow emission layers. We have estimated the vertical wavelength of the wave structure
from the phase shift of O, and O(*S) airglow emission intensities (Figure 6). From the slopes of the
dashed lines, we can get the values of vertical wavelength ranging between 14 and 25 km. On the other

hand, we can also calculate the average vertical wavelength using equation (1) (based on SABER and
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MMARIA measurements). It turns out to be 9.3 km in O, and O(*S) airglow emission layers (Figure
7e). The difference in the vertical wavelength calculated using two different methods is because of the
two instruments that record different scale sizes due to differences in viewing geometries of each
technique and the parameters recorded. In addition, from Figure 7e, the average vertical wavelength of
the wave structure is calculated to be 11.5 km (m? = 0.3 x10°® m?) in the OH airglow emission layer.
Thus, it is clear that the vertical wavelength of the wave structure is longer than the OH emission layer
thickness (10.2 km). Therefore, it is unlikely that the faint wave structure observed in the OH airglow
images is due to the cancellation of waves in the OH airglow emission layer. It appears that this rare

event occurred because of conducive background condition over northern Germany on that night.

5.3 Thermal ducting of waves

In order to investigate this interesting and intriguing observation, the derivation of the altitude profiles
of m? has been carried out over both SABER 1 and 2 measurement locations. Figure 7 suggests the
presence of a thermal duct layer (85-91 km) merely 1 hour before the appearance of the wave fronts in
the south-west region of imager FOV. In order to demonstrate the event, we have drawn a schematic
diagram depicted in Figure 8 (not to scale) from the results of the Figures 6 and 7. It is well-known that
the MIL tends to be quite stable for at least for 3-4 hours (e.g., Dao et al., 1995; Meriwether and Gerrard,
2004). However, they can be spatially discontinuous as observed from SABER 1 and 2 temperature
profiles. The theory of GW propagation predicts that the waves should reflect if the vertical
wavenumber has an imaginary component. Hence, if m? < 0, then the transmitted wave will die out
because of its amplitude decreases exponentially. It creates a region of evanescence in which the wave
cannot vertically propagate and is reflected (Isler et al., 1997; Fritts and Yuan, 1989; Hines and
Tarasick, 1994; Huang et al., 2010). Figure 8 shows how the wave structure freely propagated in three
dimensions and it encountered the bottom of the duct layer at 85 km. The m? profile indicates the
existence of a weak evanescent region at 85 km. Therefore, the duct layer observed in the present case
is a “leaky duct” from the bottom side. Thus, only a part of the wave energy could penetrate through
the bottom of the duct layer. Thus, a few wave fronts travelling from south-west to north-east could
partially enter from the bottom of the duct layer in the imager FOV in Na and OH airglow emission
regime. The other part of the wave structure, which did not encounter the duct layer, freely propagated
and entered in the FOV of the imager at O(*S) and O, airglow emission layers (demonstrated in the
Figure 8) situated at higher altitudes. This is supported by the phase progression analyses shown in
Figure 6, wherein we captured the wave structure as ‘upward propagating wave’ in O(*S) and O, airglow
emission layers on that night. However, the intrinsic phase of the wave structure in the Na airglow
emission layer indicates that the vertical phase progression is different as compared to the O(*S) and O,
airglow emission layers. This difference in the vertical phase progression is caused by the combined
effect of wave structure within and beyond the ducted layer as the airglow imager captured vertically

integrated Na airglow emission intensity peaked at 91 km with a FWHM of ~10 km (Mende et al.,
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1993). On the other hand, the intensity in the OH airglow images appeared so faint that the
determination of the phase progression of the waves in these images becomes practically impossible.
The multi-instrument observation gave us the opportunity to investigate the plausible physical process
behind this intriguing and rare phenomenon where the thermally leaky ducted layer partially inhibited
the wave progression in the OH airglow emission layer. As a result, the OH airglow images exhibit as
the faint wave front on the night of 25 April 2017 over northern Germany.

6. Summary and Conclusion

A case study of a wave event observed on the night of 25 April 2017 over northern Germany using
optical and radar instruments is reported here. The multi-wavelength all-sky airglow imager recorded
an upward propagating wave structure at multiple airglow altitudes in the MLT region. It appeared to
be very prominent in O(*S) and O airglow images. However, the same wave structure is observed to
be faint in both Na and OH airglow images, despite OH being one of the strong airglow emissions. In
order to investigate this intriguing phenomenon, the derivation of the altitude profiles of m? was carried
out using collocated MMARIA altitude profile of the horizontally resolved wind field and a SABER
temperature profile close to the event location. The obtained m? profiles indicates the presence of a
thermal duct layer in the altitude range of 85-91 km in the south-west region of Kihlungsborn. The
wave structure entered partially from the bottom of the leaky duct layer (at 85 km) and travelled from
south-west to north-east (in the imager FOV) in the OH airglow emission layer. Whereas, the other part
of the wave structure, which did not encounter the duct layer, freely propagated and entered in the FOV
of the imager at O(*S) and O, airglow emission layers resulting the weak wave structure observed in

the OH airglow images on that night over northern Germany.
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(Juliusruh and Kuhlungsborn). The map has been generated from ETOPO1 1 Arc-Minute Global Relief
Model (Amante and Eakins, 2009). The yellow box is the maximum horizontal coverage of the airglow
imager in the MLT region. The red asterisks show the SABER temperature measurement locations.
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Airglow imaging observation over Kiihlungsborn, Germany on 25 April 2017; Filter: 557.7 nm
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Figure 2: (a-f) Sequence of O(*S) 557.7 nm airglow images on 25 April 2017 over northern Germany.
(g-) Corresponding 2D FFT filtered images overlaid on horizontal variation of wind-field (yellow
arrows) at the emission centroid height (97 km) measured by MMARIA. The white arrow denotes the
wave vector.

Airglow imaging observation over Kiihlungsborn, Germany on 25 April 2017; Filter: 866.0 nm
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Figure 3: (a-f) Sequence of O, 866.0 nm airglow images on 25 April 2017 over northern Germany. (g-
I) Corresponding 2D FFT filtered images overlaid on horizontal variation of wind-field (yellow arrows)
at the emission centroid height (94 km) measured by MMARIA. The white arrow denotes the wave
vector.
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Airglow imaging observation over Kiihlungsborn, Germany on 25 April 2017; Filter: 589.3 nm
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Figure 4: (a-f) Sequence of Na 589.3 nm airglow images on 25 April 2017 over northern Germany. (g-
I) Corresponding 2D FFT filtered images overlaid on horizontal variation of wind-field (yellow arrows)
at the emission centroid height (91 km) measured by MMARIA. The white arrow denotes the wave

vector.

Airglow imaging observation over Kiihlungsborn, Germany on 25 April 2017; Filter: OH
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Figure 5: (a-f) Sequence of OH airglow images on 25 April 2017 over northern Germany. (g-I)
Corresponding 2D FFT filtered images overlaid on horizontal variation of wind-field (yellow arrows)
at the emission centroid height (86 km) measured by MMARIA. The white arrow denotes the wave

vector.
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Figure 6: (a-d) The green, red and orange solid lines in each subplot depict the wind shear corrected

intensity variation of O(*S), O, and Na airglow emissions respectively along their line of propagation.

The slices have also been horizontally shifted using the intrinsic horizontal wave speed in order to make

3

a guasi-simultaneous

‘snapshot’” of the vertical structure of the wave field. The slices have been

separated vertically in order to represent the relative vertical separations of the emission layers in the

MLT region. The emission brightness is given in arbitrary brightness units (ABU) in panel (a) and refers

to all four panels.
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Figure 7: (a) The altitude profile of projected horizontal wind along the wave vector measured during
21:30 - 22:30 UT. (b-c) The altitude profiles of SABER temperature along with measurement

uncertainty plotted as horizontal error bar over SABER 1&2 locations respectively. (d-e) The altitude

profiles of m? derived using the Equation (1) along with the proportional error plotted as horizontal

error bar over SABER 1&2 locations respectively.
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Figure 8: Schematic diagram of ducted wave fronts in OH and Na airglow emission layers over

670
northern Germany on 25 April 2017.
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