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Abstract. In this study, we use mutual information to characterise statistical dependencies of seed and relativistic electron

fluxes in the Earth’s radiation belts on ultra low frequency (ULF) wave power measured on the ground and at geostationary

orbit. The benefit of mutual information, in comparison to measures such as the Pearson correlation, lies in the capacity to

distinguish nonlinear dependencies from linear ones. After reviewing the property of mutual information and its relationship

with the Pearson correlation for Gaussian bivariates, we present a methodology to quantify and distinguish linear and nonlinear5

statistical dependencies that can be generalised to a wide range of solar wind drivers and magnetospheric responses. We present

an application of the methodology by revisiting the case events studied by Rostoker et al. (1998). Our results corroborate the

conclusions of Rostoker et al. (1998) that ULF wave power and relativistic electron fluxes are statistically dependent upon one

another. We also estimate that the Pearson correlation is missing between 20% and 30% of the statistical dependency between

ULF wave power and relativistic electron fluxes. Thus, the Pearson correlation underestimates the impact of ULF waves one10

energetic electron fluxes. However, we find that observed enhancements in relativistic electron fluxes correlate modestly, both

linearly and nonlinearly, with the ULF power spectrum when compared with values found in previous studies (Simms et al.,

2014), and with correlational values found between seed electrons and ULF wave power for the same case events. Our results

are indicative of the importance in incorporating data analysis tools that can quantify linear and nonlinear interdependencies

of various solar wind drivers.15

1 Introduction

The Earth’s radiation belts are nonlinearly driven and weakly collisional plasma environments in which deposited energy and

momentum leads to the energisation of electrons to relativistic energies (Van Allen et al., 1958; Walt, 2005). From a fundamen-

tal physics perspective, the acceleration of charged particles to supra-thermal energies is ubiquitous to astrophysical plasma

environments. As the closest astrophysical accelerator of particles to the Earth, the radiation belts are amenable to detailed20

in situ measurements of electromagnetic fields distribution functions. Their studies are therefore relevant to other astrophysi-

cal environments with comparable thermodynamical properties in which particles are confined by large-scale inhomogeneous

magnetic fields (Kulsrud, 2005). From an applied perspective, a wide range of satellites’ orbits overlap with the Earth’s radi-
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ation belts, with the undesirable consequence that the energetic particles can damage the onboard electronics and shorten the

lifespan of communication systems (Baker et al., 2018). Thus, the main focus of Earth’s radiation belts’ studies is to quantify25

the processes scaling from electron kinetic scales to planetary scales that enhance and deplete the plasma (Ukhorskiy and Sit-

nov, 2012; Thorne et al., 2013; Lejosne and Kollmann, 2020).

It has been known for several decades that the Earth’s radiation belts were driven far from thermodynamical equilibrium as

a results of variable solar wind conditions (McCormac, 1965). This departure from thermodynamical equilibrium results in30

kinetic distribution functions that are unstable and the production of fluctuations that can thermalise the plasma and accelerate

particles. A growing number of in situ measurements and observational studies in the last two decades have demonstrated that

the Earth’s radiation belts’ response to solar wind driving and fluctuations can also be nonlinear, and that nonlinearity ought

to be accounted for in order to improve prediction capabilities (Wing et al., 2016; Simms et al., 2018). From a theoretical

perspective, every self-consistent set of equations describing fluid and kinetic scales plasma physics are inherently nonlinear.35

The departure of linearity in a dynamically evolving plasma translates into the appearance, and therefore measurements, of

non-Gaussian fluctuations (Papoulis and Pillai, 2002). Even if a nonlinear system is initialised with Gaussian fluctuations, non-

Gaussian fluctuations would eventually emerge. It is therefore not surprising that non-Gaussian fluctuations are commonly

found across a wide-range of astrophysical plasma environments (Dudok de Wit and Krasnosel’skikh, 1996; Marsch and Tu,

1997; Stepanova et al., 2003; Osman et al., 2014; Osmane et al., 2015b). Taking into account the above theoretical constraints40

and observational results, one quickly recognises that in order to quantify nonlinearity in the Earth’s radiation belts, one has to

use measures that can be sensitive to nonlinear dependencies, and are capable to distinguish it from linear ones.

In this study, we present an application of information theory to the search of dependencies between energetic electron fluxes

measured in the Earth’s radiation belts and ULF wave power measured both at geostationary orbit and on ground. Unlike more45

commonly used measures like the Pearson correlation, information theoretic tools, such as mutual information, have the benefit

to distinguish nonlinear dependencies from linear ones. In order to demonstrate the value in the use of information theoretic

methods, we revisit the highly cited case studies of Rostoker et al. (1998). In their study, it was suggested that ULF pulsations

can provide energy for acceleration of electrons to relativistic energies based on visual inspection of relativistic electron fluxes

at geostationary orbit and ground ULF wave power. It should be stressed that Rostoker et al. (1998) conclusions are cautiously50

stated and that a value for a correlation or any other measure is not provided. Nonetheless, it is not too uncommon to find citing

authors describing their results as compelling and evidence of strong correlation between ULF wave power and relativistic

electron fluxes. The impact of ULF fluctuations in the enhancement and loss of energetic electron fluxes also forms the basis

of radial diffusion formalisms and is, as of today, understood as one of the two dominant transport mechanisms in planetary

radiation belts (see Lejosne and Kollmann (2020) and references therein).55

The application of information-theoretic measures to space plasma problems is not new but it has recently shown its utility

for a wide-range of methodologies and problems (see De Michelis et al. (2011); Wing et al. (2016); Runge et al. (2018);
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Johnson et al. (2018); Osmane et al. (2019); Wing and Johnson (2019); Cameron et al. (2019) and references therein). Of

particular relevance to our study, Wing et al. (2016) presented an application of information theoretic measures to quantify60

the dependence of relativistic electron fluxes measured on geostationary orbits to a wide-range of solar wind drivers. In their

study, Wing et al. (2016) demonstrate that the solar wind speed is the main driver and that the effect of the solar wind density,

sometimes suggested as a dominant driver for relativistic electron fluxes (Balikhin et al., 2011), holds 30% lesser information

content and operates on a different timescale. The main departure between the work presented hereafter and the study of Wing

et al. (2016) lies in our introduction of a quantity called information-adjusted correlation and the use of a dataset that has a 165

hour resolution of geostationary-measured seed and relativistic electron fluxes. The information-adjusted correlation is defined

as the correlation value that would be obtained from the mutual information under the assumption that the dependence between

the two variables can be represented as a Gaussian bivariate. The choice of a Gaussian bivariate to distinguish linear and

nonlinear dependences as hinted above stems from the fact that nonlinear equations produce non-Gaussian statistics even in

the instance where a system is initialised with Gaussian distributed random variables (Papoulis and Pillai, 2002). We therefore70

present a methodology that allows us to provide clear answer the following two questions:

– (1) Are the events studied by Rostoker et al. (1998) evidence of statistical dependence between ULF wave power and

electron fluxes?

– (2) Are nonlinearities present in the instance where the dependence between ULF wave power and electron fluxes is

statistically significant?75

Our report is presented as follows. Section 2 presents a brief a summary to the tools of information theory used for the

analysis. We put a particular emphasis on the application of mutual information to the case of Gaussian random variables of

arbitrary correlation which serves as a benchmark for linear dependencies. In Section 3 we describe the used dataset and the

associated instruments’ specificities relevant to our study. In Section 4, we present our results for geostationary-measured seed

and relativistic electron fluxes measured during the events presented by Rostoker et al. (1998). In Section 5, we interpret and80

compare our results in light of previous studies, and then conclude with suggestions for future studies and improvement of our

methodologies for instances where statistical dependencies are difficult to extract.

2 Methodology

In this section we present a definition of mutual information in terms of the Shannon entropy and the specific mutual infor-

mation of Gaussian bivariate random variables. The Gaussian bivariate case with arbitrary Pearson correlation ρ is used as85

a toy model to benchmark the numerical estimate of mutual information and to distinguish linear from nonlinear statistical

dependencies. A detailed description and derivation of mutual information for Gaussian bivariates is provided in the Appendix

for the interested reader.
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2.1 Mutual Information

It is preferable to introduce mutual information by first defining the Shannon entropy H(X) for a discrete random variable X90

(Cover, 1999). The Shannon entropy is a measure of the uncertainty contained in a random variable. In communication theory

it is the number of bits on average required to describe a message X ∈ X , in which X denotes the alphabet, or equivalently the

discrete states that can be assigned for the random variable X . Practically speaking, if Nadia wants to send a message to Jorge,

the Shannon entropy is the average number of binary questions (e.g., yes or no) one ought to ask in order to accurately decode

a message X written in terms of a given alphabet X . Mathematically, it is written in terms of the probability mass function95

p(x) as:

H(X) =−
∑
x∈X

p(x) logp(x). (1)

The Shannon entropy is a positive definite quantity H(X)≥ 0 and is bounded by H(X)≤ log(|X |) with equality if and

only if the random variable X is distributed uniformly over X . Since the entropy is a measure of uncertainty (or equivalently

knowledge), it is convenient to ask what happens to the amount of uncertainty if we are given additional information encoded100

in terms of Y ∈ Y . In other words, do we gain or lose information about the likelihood of eventX given Y ? Intuitively, one can

assume that if X and Y are entirely independent, knowing one says nothing about the other 1. On the other hand, if X and Y

are contingent to one another, or share a causal relationship, it can then be shown that conditioning effectively reduces entropy,

and therefore uncertainty. In the instance where X and Y are independent, the conditional entropy H(X|Y ), which should be

read as the entropy of X given Y , reduces to H(X). On the other hand, if X and Y are statistically dependent, the entropy105

will be reduced, with H(X|Y )<H(X). For two random variables X and Y , this reduction in uncertainty is quantified by the

mutual information:

I(X,Y ) = H(X)−H(X|Y )

=
∑
x∈X

∑
y∈Y

p(x,y) log

(
p(x,y)

p(x)p(y)

)
(2)

The mutual information is symmetric in X and Y and is a measure of the dependence between two random variables. It is110

always nonnegative and only equal to zero if X and Y are independent, or equivalently if the joint distribution is the product

of the marginals, i.e., p(x,y) = p(x)p(y). In our analysis the variable we use (i.e., electron fluxes and ULF wave power) are

continuous, however, the use of Equation (2) requires binning and therefore discretisation. Thus, Equation (2) has been used to

compute an estimator of mutual information for the dataset described in Section 3.

115

Even though probability distribution functions of electromagnetic fields and particle velocity distributions in space plasmas

often depart from Gaussianity, it is useful to refer to the Gaussian bivariate case to develop an appreciation of mutual informa-

1If X and Y are not dependent on one another, we have not lost information. But if a variable X (e.g., ULF wave power) and Y (MeV electron fluxes) are

dependent on one another under some conditions (e.g., large solar wind speed ), the removal of the conditions upon which the dependence is strong can result

in a loss of information (reduction of mutual information), and thus a loss of knowledge.
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tion for linear systems and as a benchmark to test numerical estimates. Conveniently, there is an exact analytical relationship

between the Pearson correlation and mutual information of a Gaussian bivariate in terms of the Pearson correlation ρ:

I(x,y) = −1

2
log(1− ρ2). (3)120

The interested reader can find a definition of mutual information for continuous random variables and the derivation of Equation

(3) for Gaussian bivariates in the Appendix. Since the mutual information is a measure of how much we know from X given

Y , and vice-versa, the nonlinear relationship between mutual information and the correlation is an indication that the Pearson

correlation should not be interpreted linearly. Indeed, the difference in information between random variables of 0.75 and 0.5

correlation is not of order 50% (0.75/0.5− 1 = .5) but rather 187%. Thus, two random variables with Pearson correlation of125

0.75 carry a much larger amount of information upon one another than one with correlation of 0.5. An additional constraint with

the Pearson correlation resides with fat-tailed random variables. For Gaussian bivariates, independence is synonymous with

uncorrelated. However, for fat-tailed random variables, as commonly measured in space and astrophysical plasmas, strongly

dependent random variables can have zero correlation (Taleb, 2020). Unlike the Pearson correlation, mutual information is able

to quantify the dependence of random variables in the absence of correlation. As a simple example the reader can test for itself,130

consider two random variables X and Z. X ∼N(0,1) is Gaussian random variable with zero mean and a standard deviation

of 1. Z is the square of X , i.e. Z =X2. Thus the relationship between Z and X is nonlinear and there is no doubt that Z and

X are statistically dependent with one another. However, computing the Pearson correlation is inconclusive as it gives a value

of zero, whereas mutual information computed with the code described below indicates a large statistical dependence with a

value of 1.42.135

2.2 Numerical computation of mutual information

The procedure we follow to compute the mutual information for two time series consist in binning the data according to the

Freedman-Diaconis rule (Freedman and Diaconis, 1981). Thus, even though the electron fluxes and ULF wave power are con-

tinuous, our procedure has the consequence to discretise the variables. This discretisation leads to biases in the estimation of

mutual information that are dependent on the number of measurement pointsN and statistical dependence of the two variables.140

For instance, two Gaussian random variables with a high correlation would require less measurement points to estimate the

mutual information than two Gaussian random variables with a low correlation or two fat-tailed random variables with some

arbitrary correlation. Using numerically produced Gaussian bivariates with N points and the analytical relationship between

mutual information and correlation in Equation (3) one can therefore test mutual information estimators and quantify the error

due to binning.145

In Figure 1 we plotted the numerical estimate and analytical solution for 106 points extracted from Gaussian bivariates with

correlations ranging between −1 and 1. Figure 1 is provided to show the correspondence between the Pearson correlation and

mutual information and give an estimate of what values of mutual information is considered large. Figure 1 shows that greater
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than 0.5 are considered large.150

Comparing the theoretical and numerical value of mutual information in Figure 1, we note that our estimator does well for

low correlation values though it gains a discrepancy as large as 10% for correlation absolute values greater than 0.5. In order

to estimate the error introduced by discretization we apply a shuffle test to the two time series and compute the average value

of mutual information and its standard deviation for one hundred shuffles. We find that the error computed with the shuffling155

procedure is Gaussian distributed and we interpret the average mutual information obtained from shuffling as the zero baseline

level. This baseline for each events is plotted as an orange bold line in Figures 4-11 for panels (a) and (c). The shaded orange

area represents the 3 standard deviation range from the mean. Estimates of mutual information for electron fluxes and ULF

wave power above the shaded area are therefore interpreted as significant with ±3 standard deviation. More sophisticated

methods to compute mutual information through non-parametric methodologies are possible (Kraskov et al., 2004), but for160

our dataset, the statistical dependence between variables and the number of points are sufficient for us to answer the questions

stated in the introduction.

3 Dataset

The data used in this study corresponds to the two events analysed by Rostoker et al. (1998). The first period extends from

March second to May 31st in 1994 (91 days in total) and the second one spans from November first to 26th in 1993. During165

the first period a big geomagnetic storm occurred on April 17th with minimum Dst of -201 nT, and the period featured also

several moderate and intense storms. During the second period an intense storm peaked on November 4th with minimum Ds

-119 nT. Another significant storm during this latter period was a moderate storm on November 18th with Dst minimum -82

nT. Both periods were thus geomagnetically active. Our choice to revisit the work of Rostoker et al. (1998) through mutual

information stems from the fact that such methodology has not been used before, and that their study, highly cited in the170

literature as evidence that radial diffusion, is a leading mechanism for the energisation of relativistic electrons, can serve as a

benchmark for more involved methodologies. Additionally we have access to a comparable dataset with better resolution (1

hour resolution instead of 1 day), so we can not only revisit the results of Rostoker et al. (1998) with information theory but find

a more accurate time lag for the electron’s response to ULF wave power. In Rostoker et al. (1998) the Pc5 ULF measurements

were from the Gillam measurement station of the Canadian Auroral Network for the OPEN Program Unified Study Project175

(CANOPUS) and the electron fluxes (> 2 MeV) were from Geostationary Operational Environmental Satellite 7 (GOES 7).

The GOES data is the daily average flux and the ULF data is the average over a six hour period from dawn to noon.

3.1 ULF power spectrum

The ULF data used in this analysis was from National Aeronautics and Space Administration’s (NASA) Virtual Radiation Belt

Observatory (ViRBO) and the used ULF indices Sgr and Sgeo, both describing ULF spectral power from which noise has been180

removed, are derived in Kozyreva et al. (2007) The ULF data is for Pc5 frequency range of 2 - 10 mHz. The ULF indices used
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in this work are the logarithm in base 10 of the signal spectral power. The signal spectral power is the integral over the power

spectral density above the noise level (Kozyreva et al., 2007). The index values of signal spectral power are 1 hour averages

from measurements done in 1 minute resolution by a global network of measuring stations. The measurements of each station

are averaged separately, and the index value is the maximum of those hourly averages. The in situ geosynchronous index Sgeo185

has been calculated from the measurements of GOES spacecraft and the ground ULF index Sgr is based on measurements

from stations on the Northern hemisphere. The ULF measurements from ground stations for any hour of universal time have

been done in the MLT sector from 3 to 18 hours and between the CGM latitudes 60o and 70o. For the ground index, omitting

the stations outside the MLT sector from 5 to 15 hours has little effect on the measurement results, since the cross-correlation

between the ULF measurements in the MLT interval of 3 to 18 hours and those that span the MLT interval 0 - 24 hours is190

about 0.95 (Kozyreva et al., 2007). It is interesting to compare both ground and geostationary ULF activity since toroidal

ULF waves with small azimuthal mode number m waves can transmit to the ground, whereas poloidal ULF waves with high

azimuthal mode number m are confined to the inner magnetosphere. Azimuthal mode number affects the electron energies that

can resonate with these waves and a discrepancy in correlational measures for ground and geostationary ULF measurements

can be of indicative of certain wave mode dominance.195

3.2 Seed and relativistic electron fluxes indices

In order to quantify the electron fluxes we use the indices Fe1.2 and Fe130 described in Borovsky and Yakymenko (2017)

for electrons with energies near 1.2 MeV and 130 keV, respectively. The indices are computed as the base 10 logarithm of the

maximum geostationary- measured electron fluxes by any of the SOPA instrument on board of Los Alamos National Laboratory

(LANL) spacecraft for a given energy channel at the outer radiation belts. For every hour of universal time the maximum of 6200

minute median values over all satellites is recorded as the flux value during that hour. The median values for each satellite are

calculated from measurements done at a 10 second sampling rate2. Fe130 is a measure of the intensity of substorm-injected

electrons in the dipolar magnetosphere: Fe130 rises rapidly at the onset of a magnetospheric substorm and subsequently decays

over the timescale of a few hours. Fe1.2 is a measure of the intensity of the outer electron radiation belt: Fe1.2 grows slowly

during very active times and decays over the timescale of a few days during quiet times. Fe1.2 can also exhibit sudden dropouts205

at the onsets of geomagnetic storms.

4 Results

Figures (2) and (3) show the 24 hour average of relativistic electron flux indices and ULF power indices as a function of time

for the two events studied by Rostoker et al. (1998). In each figure the panel on the left has the geosynchronous ULF index

plotted, whereas the panel on the right has the ground ULF index plotted. We remind the reader that our data sets have different210

2The fluxes have been derived in Cayton and Belian (2007) by converting them from count rates. The electron counts contain also incident protons,

alpha particles, and gamma-rays, which have been treated as additional electrons instead of being removed from the raw data. Changes in processing the

measurement data over the years may also have caused systematic errors in the measurement data, but maybe only a few percent of the data records are

contaminated (Cayton and Belian, 2007)
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time resolutions from those used by Rostoker et al. (1998) with 24 hours resolution, whereas we use 1 hour resolution and 24

hours moving averages. However, the visual comparison of Figures (2) and (3) to Figures (1) and (2) in Rostoker et al. (1998)

show that they are very similar 3. In the following we will look at each event separately and compare the values obtained for

the mutual information and the Pearson correlation. The reader can also skip sections 4.1 to 4.4 and consult Table 1 which

contains a summary of our results. Table 1 is extracted from the information found in Figures 4-11, and while the shape of the215

statistical dependencies shown in Figures 4-11 are similar, differences between the Events are significant.

4.1 Event 1 for the electron index Fe1.2

Figure (4) shows the mutual information and correlation of the relativistic electron flux index Fe1.2 with ULF wave power as a

function of time lag for the Event 1 from March 1 to May 31st in 1994 of Rostoker et al. (1998). The increment in time lag is

of 1 hour. Positive time lag indicate that changes in ULF wave power precedes those in electron flux and negative vice-versa.220

The panels (a) and (b) in each figure show the dependence with ULF ground index Sgr, whereas panels (c) and (d) are for

the dependence with ULF geostationary index Sgeo. The orange line in the panels with mutual information represents the

zero value on the basis of the shuffling procedure described in the methodology section. The shaded area overlapping the zero

curve for mutual information represents the three standard deviation spread. Thus a value above the shaded area represents a

measurement of mutual information that has at least six sigma significance.225

We note that the peaks in mutual information and Pearson correlation occur between 48 and 50 hours time lag and have maxi-

mum values of Imax ' 0.5 and ρmax ' 0.55−0.6. The mutual information and correlation of electron fluxes with geostationary

ULF power Sgeo shows a prominent 24 hour modulation. As is typical for an index that measures magnetospheric quantities,

Fe1.2, Fe130, Sgr, and Sgeo have 24-hr periodicities in them caused by dipole wobble, longitudinal station coverage, etc. These230

24-hr periodicities show up as 24-hr peaks in their autocorrelation functions (see Fig. 2a of Borovsky and Yakymenko (2017)

for Fe1.2 and Fe130 and see Fig. 4a and 4b of Borovsky and Denton (2014) for Sgr and Sgeo). These 24-hr periodicities will also

show up in the cross-correlations between magnetospheric variables. Another main differences between mutual information

and correlation in Figures 4 and 5 is that mutual information consistently have very pronounced secondary peaks at time offset

around -100 h whereas the secondary peaks in the Pearson correlations appear to be less pronounced or less significant. In the235

Discussion section we show that the Pearson correlation is missing out about 20-30% of the statistical dependence due to its

inability to capture nonlinearities and that differences in peaks between mutual information and Pearson correlation might be

at least partially explained by the inability of the latter to measure nonlinear statistical dependencies.

Figure (5) looks at the same dependence as in Figure (4) but for a time moving 24 hour average of the indices. Using a time240

moving average introduces statistical dependence between points less than 12 hour lag apart, but is useful to denote long-term

3Reducing our resolution to 24 hours for a strict comparison with (Rostoker et al., 1998) is not useful because the values of mutual information and

correlation are low, and reducing the number of points would bring both measures to the noise level.

8



trends. The mutual information and correlation in Figure (5) have the same peaks and shape as in Figure (4) for the one hour

resolution, but because of the averaging the modulation present in the high resolution data is lost.

4.2 Event 2 for the electron index Fe1.2

Figure (6) shows the mutual information and correlation of the relativistic electron flux index with ULF wave power as a func-245

tion of time lag for the Event 2 from November 2nd to November 26th in 1993 of Rostoker et al. (1998). Similarly to Figure

(4), indices are plotted with a 1 hour time lag increment. The panels (a) and (b) in each figure show the dependence with ULF

ground index Sgr, whereas panels (c) and (d) are for the dependence with ULF geostationary index Sgeo. We note that for

Event 2 local peaks occurs for 24-48 hours lag time, but both the mutual information and Pearson correlation, for comparable

resolution, are significantly weaker than for Event 1 with Imax < 0.4 ρmax < 0.5. Unlike for Event 1, Event 2 shows different250

dependence on the time lag between the mutual information and correlation. This discrepancy between the two measures could

be indicative of time dependent nonlinearity of relativistic electron fluxes with ULF wave power.

Figure (7) looks at the same dependence as in Figure (6) but for a time moving 24 hour average of the indices. A 24 hour

running average removes the 24 hour periodicity in the indices and hence removes the 24 hour peaks in the cross-correlations.255

We note that the value of the mutual information is once again significantly enhanced since the averaging introduces statistical

dependencies between two points less than 12 hours apart, but we also notice that there is a different dependence than for

the Pearson correlation. These differences between the two measures and their potential origin in nonlinear phenomena are

discussed in the Discussion section.

4.3 Event 1 for the electron index Fe130260

Figure (8) shows the mutual information and correlation of 130 keV electron flux index Fe130 with ULF wave power as a

function of time lag for the Event 1 of Rostoker et al. (1998). The indices are once more plotted with a 1 hour resolution and

time lag increment. The panels (a) and (b) in each figure show the dependence with ULF ground index Sgr, whereas panels (c)

and (d) are for the dependence with ULF geostationary index Sgeo. We note that the time lag dependence of mutual information

and correlation are comparable and that the peak in both occurs for a lag of τ = 0. The peak in the mutual information between265

Sgr and Fe130 is Imax ' 0.68, which is significantly greater than the mutual information between Sgr and Fe1.2. On the other

hand, the peak in the mutual information between Sgeo and Fe130 is Imax ' 0.4, which is comparable to the peak value we

found for the mutual information between Sgeo and Fe1.2. As observed in Figure (4) we also note a modulation in the mutual

information and correlation of electron fluxes with geostationary ULF power Sgeo not present in the dependence with the

ground power index Sgr. Figure (9) shows the same dependence as in Figure (8) but for a time moving 24 hour average of the270

indices.
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4.4 Event 2 for the electron index Fe130

Figure (10) has the same description as Figure (8) but the mutual information and Pearson correlation are computed for Event

2 of Rostoker et al. (1998). Similarly to Event 1, Event 2 shows that the time lag dependence of mutual information and

correlation is comparable and that the peak in both occurs around a lag of τ = 0 and values of Imax ' 0.6− 0.68. Figure (11)275

looks at the same dependence as in Figure (10) but for a time moving 24 hour average of the indices. A comparison of Event 1

and Event 2 show a similar time response and dependence of 130 keV electron flux index Fe130 with ULF wave power.

5 Discussion

We are now ready to answer the two questions stated in the introduction: (1) Are the events studied by Rostoker et al. (1998)

examples of strong ULF wave power and energetic electron dependence? (2) Is the statistical dependence between ULF wave280

power and electron fluxes nonlinear? In order to answer these two questions we have tabulated the values of the maximum

Pearson correlation and maximum mutual information for all events in Table 1. The columns denote, from the left to the

right, the event year, the flux index, the ULF index, the maximum Pearson correlation, the maximum mutual information,

the information-adjusted correlation, and the lag for the maximum mutual information, respectively. The information-adjusted

correlation is defined as the correlation value that would be obtained from the mutual information under the assumption that285

the dependence between the two variables can be represented as a Gaussian bivariate (cf. Equation 3). The choice of a Gaussian

bivariate to distinguish linear and nonlinear dependences stems from the fact that nonlinear equations produce non-Gaussian

statistics even in the instance where a system is initialised with Gaussian distributed random variables (Papoulis and Pillai,

2002). Mathematically, the information adjusted correlation can be defined by applying the inverse of Equation (3):

ρadj = sign(ρ)
√
1− 2−2I (4)290

The information-adjusted correlation ρadj allows us to determine whether the Pearson correlation has underestimated the de-

pendence between the random variables due to the presence of nonlinearity. The instance in which the adjusted correlation is

statistically comparable to the Pearson correlation denotes that a linear dependence between the fluxes and ULF power domi-

nates and that nonlinear dependencies are either too weak or non-existent. In the opposite case, an adjusted correlation larger

than the Pearson correlation indicates that nonlinear dependencies between fluxes and ULF power are statistically significant.295

Are the events evidence of strong ULF wave power and energetic electron dependence? For the two events studied, the Pearson

correlation and the mutual information are both statistically significant, and well above the noise level. However, the maximum

correlation values for relativistic electrons range between 0.41 and 0.59, and the maximum mutual information values range

between 0.36 and 0.49. For comparisons, Simms et al. (2014) analyses from 219 storms find values of correlation of 0.65 for300

ground ULF and 0.50 for GOES ULF with relativistic electron fluxes. Thus, the values for correlation of the 1993 event are

showing weaker linear and nonlinear statistical dependence whereas the 1994 event has correlation values on par with events

found over 11 years of data (Simms et al., 2014). The methodology of Simms et al. (2014) separates variables in terms of storm
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phases and defines a predictor variable, e.g., ULF wave power, as an average over an appropriate time period for a given storm

phase. Since we are studying case events the statistical methodology of Simms et al. (2014) can not be explicitly reproduced,305

but we find comparisons with our results useful in that it gives us a point of reference to judge the strength of the correlation val-

ues we found. For another comparison, for all times during the years 1995-2006 (Borovsky, 2017) found a Pearson correlation

coefficient of 0.34 between Fe1.2 and Sgr, whereas they found a higher correlation coefficient of 0.54 between Fe1.2 and the

123-hr time integral of Sgr. Similarly it was found that the correlation coefficient between Fe1.2 and Sgeo was 0.21 whereas the

correlation coefficient was 0.25 between Fe1.2 and the 138-hr time integral of Sgeo. For all times during the years 1995-2004310

Borovsky and Denton (2014) explored correlation coefficients between Sgr and Sgeo and a relativistic-electron flux F that was

calculated differently from Fe1.2. They found correlations between F and Sgr of 0.36 (with a time lag of 56 hr) and between

F and the 126-hr time integral of Sgr of 0.55. Likewise they found correlations between F and Sgeo of 0.28 (with a time lag of

71 hr) and between F and the 156-hr time integral of Sgr of 0.32. Our results demonstrate that even though the events appear,

at least visually, to show strong correlation between ULF waves and relativistic electron fluxes, quantitatively the dependence315

is comparable to other values found in the literature but nonetheless modest when compared with the correlation between ULF

waves and seed electrons.

Comparing between seed and relativistic electrons, the statistical dependence with ULF wave power of the 130 keV flux is

significantly larger than for relativistic fluxes and ranges between 0.54 and 0.68 for the maximum Pearson correlation and320

0.44 and 0.67 for the maximum mutual information. We also note that the time-lag for the maximum values is comparable

whether one uses the mutual information or the Pearson correlation. 130 keV fluxes have a maximum dependence with time

lags of less than a day whereas the relativistic electrons see a maximum for time lags considerably longer between 42 and 67

hours. Moreover, the ground ULF wave power gives a larger dependence than geostationary measured ULF wave power for

the 1994 event. For the 1993 event the statistical dependence is the same whether one uses ground or geostationary indices.325

The ground ULF index spans local daylight hours between 0500 and 1500, whereas the GOES ULF covers the full 24 hours

period. This local time difference between ground and geostationary sampling of wave power makes the latter more susceptible

to be influenced by substorm activity and the former by viscous processes and pressure pulses on the dayside magnetosphere

during moderate geomagnetic activity (Borovsky and Funsten, 2003; Osmane et al., 2015a). However, and as pointed out by

Simms et al. (2014), the most notable difference between ground and GOES data is that the ground magnetometers are better330

positioned to catch ULF wave activity that would result in radial diffusion transport (Lejosne and Kollmann, 2020).

To address the second question, we compare the values of the information adjusted correlation with the Pearson correlation.

We note that the adjusted correlation is significantly larger than the Pearson correlation for all instances. In other words, though

constrained to two case studies, our results demonstrate the presence of nonlinear statistical dependencies between energetic335

electron fluxes and ULF wave power. By using information theory we make no assumptions about the functional form of

the nonlinear dependence between the variables, but we can nonetheless state that nonlinearities have to be accounted for.

Our results are consistent with the study of Simms et al. (2018) in which they built regression models that assumed a quadratic
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dependence in the ULF wave power with a one day lag. Their results indicate that the response of relativistic electron fluxes can

be a combination of linear and nonlinear dependence and that incorporating a quadratic term might provide better predictions.340

Based on the values for the information adjusted correlation, the Pearson correlation might be missing between 20% and 30%

of the statistical dependencies between ULF wave power and relativistic electron fluxes.

6 Conclusions

The Earth’s inner magnetosphere is a nonlinearly driven plasma environment in which electrons can be collectively energised

to relativistic energies by ULF fluctuations (Lejosne and Kollmann, 2020). The emergence of nonlinear processes translates345

into non-Gaussian fluctuations in the electromagnetic fields and particle distribution functions. Thus, in order to quantify the

processes at play to model the Earth’s radiation belts accurately, one needs to determine whether nonlinear statistical depen-

dencies between drivers, such as the solar wind speed and the ULF wave power, and quantities in which energy and momentum

is deposited , such as electron fluxes, have to be accounted for.

350

In this study, we described the use of mutual information to characterise statistical dependencies of relativistic electron fluxes on

ULF wave power. The benefit of mutual information, in comparison to the Pearson correlation, lies in the capacity to distinguish

nonlinear dependencies from linear ones. In order to test our methodology, we revisited the case study of Rostoker et al. (1998)

in which two events were shown, from a visual perspective, to indicate strong correlation between the rise of relativistic electron

fluxes and ULF wave power. Our application of mutual information to the events presented by Rostoker et al. (1998) indicate355

that relativistic electron fluxes are linearly and nonlinearly dependent on ULF wave power. However, the values that we found

for both the Pearson correlation and mutual information of relativistic electron fluxes and ULF wave power are modest when

compared to previous statistical results (Simms et al., 2014) and consistently smaller than the one found between seed electrons

and ULF wave power. This result is counter-intuitive since seed electrons with long azimuthal periods can not experience drift-

orbit resonance with ULF wave fluctuations. and should therefore not be correlated with radial diffusion drivers more strongly360

than relativistic electron fluxes. However, our results do not indicate a necessary causal physical relationship between seed

electrons and ULF wave power, but it does point out to the necessity of not over-interpreting correlational measures, whether

linear or nonlinear. The modest dependence of relativistic electron fluxes with ULF wave power could also originate in a

shared dependence on solar wind drivers such as the solar wind speed. Our results are therefore indicative of the need to

incorporate data analysis tools that can distinguish between interdependencies of various solar wind drivers. In the framework365

of information theory, conditional mutual information is specifically built for that purpose and has been successfully used to

resolve a long lasting question about the relative role of solar wind speed and density in driving relativistic electron fluxes

(Wing et al., 2016). In future studies, we will also apply a comparable methodology presented in (Simms et al., 2014) to seek

dependencies of relativistic electron fluxes on solar wind drivers for given storm phases and build non-parametric estimators

for the probability density of random variables that do not require binning (Kraskov et al., 2004).370
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Appendix

Mutual information for continuous variables

For a random variable X , if the cumulative distribution function F (x) is continuous, then X is said to be continuous as well.

Let’s denote the probability distribution function f(x) = dF (x)/dx. The differential entropy of a continuous random variable

X is defined as:375

h(X) =−
∫

S∈R

f(x) logf(x) dx (5)

where S is the support set where f(x)> 0. Differential entropy h(X), as in the discrete case with the Shannon entropy H , is

also a measure of the uncertainty for a random variable X . However, unlike in the discrete case, the differential entropy can be

negative. Consider for instance a random variable distributed uniformly from 0 to L, so that its density is f(X) = 1/L. Then

its differential entropy is:380

h(X) = −
L∫

0

1

L
log

1

L
dx

= log(L) (6)

Thus, for L < 1, logL < 0 and the differential entropy is negative. The mutual information I(X;Y ) can be extended to con-

tinuous variables as:

I(x;y) =

∫
f(x,y) log

f(x,y)

f(x)f(y)
dx dy385

= −
∫
f(x,y) logf(x) dx dy−

∫
f(x,y) logf(y) dx dy

+

∫
f(x,y) logf(x,y) dx dy

= h(x)+h(y)−h(x,y) (7)

Derivation of mutual information for Gaussian bivariates

We consider a bivariateX = (X,Y )T with mean vector390

µ=

µx

µy

 (8)

and covariance matrix given by

C =

 σ2
x σxσyρ

σxσyρ σ2
y
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for means E[X] = µx, E[Y ] = µy , variances σ2
x = E[X2]−µ2

x, σ2
y = E[Y 2]−µ2

y and correlation coefficient ρ defined as:

ρ=
E[XY ]−µxµy

σxσy
. (9)395

The probability density function of the X −Y bivariate is:

f(x,y) =
1

2π|C|1/2
exp

(
−1

2
XTC−1X

)
=

1

2πσxσy
√
1− ρ2

exp

[
− 1

2(1− ρ2)

(
(x−µx)

2

σ2
x

)]
× exp

[
− 1

2(1− ρ2)

(
(y−µy)

2

σ2
y

− 2ρ(x−µx)(y−µy)

σxσy

)]
(10)

For the sake of simplicity we focus on the case where µx = µy = 0 and σx = σy = σ, in which case the joint bivariate distri-400

bution takes the form:

f(x,y) =
(1− ρ2)−1/2

2πσ2
exp

(
−x

2 + y2− 2ρxy

2(1− ρ2)σ2

)
(11)

and the marginals f(xi) = (2πσ2)−1/2 exp(−x2i /2σ2) for xi = (x,y). Using equation (7) we can compute the mutual infor-

mation between X and Y . For h(xi) we find:

h(xi) = −
∫
f(xi) logf(xi) dxi405

=
1

2

∫
f(xi) log2πσ

2 dxi +
1

2σ2

∫
f(xi)x

2
i dxi

=
1

2
log2πσ2 +

1

2

=
1

2
log4πσ2 (12)

in which the logarithm is in base 2. And now for the joint differential entropy of a Gaussian bivariate:

h(x,y) = −
∫
f(x,y) logf(x,y) dx dy410

= − log
(1− ρ2)−1/2

2πσ2

∫
f(x,y) dx dy

−
∫ (

x2 + y2− 2ρxy

2(1− ρ2)σ2

)
f(x,y) dx dy

=
1

2
log(1− ρ2)+ log4πσ2. (13)

Therefore, the mutual information of a Gaussian bivariate is a nonlinear function of the correlation ρ:

I(x,y) = h(x)+h(y)−h(x,y)415

= −1

2
log(1− ρ2). (14)
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Figure 1. Mutual information estimator for bivariate Gaussian random variables with σx = σy = 1 and zero mean as a function of the

correlation ρ ∈ [−1,1]. The numerical value is traced in red, and the analytical in blue. The estimator is computed for N = 105 points and

46 ('N1/3) bins according to the Freedman-Diaconis rule.
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(a) (b)

Figure 2. (a) 24 hour average of relativistic electron flux index Fe1.2 and geosynchronous ULF index Sgeo for the 1994 event from the

Rostoker et al. (1998) study. (b) Same as for panel (b) but with ground ULF index Sgr for the 1994 event. We note that visually the ground

index Sgr follows more closely the relativistic electron flux index for the duration of the event.

(a) (b)

Figure 3. (a) 24 hour average of relativistic electron flux index Fe1.2 and geosynchronous ULF index Sgeo for the 1993 event from the

Rostoker et al. (1998) study. (b) Same as for panel (b) but with ground ULF index Sgr for the 1993 event.
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(a) (b)

(c) (d)

Figure 4. Dependence of the mutual information and Pearson correlation for ground ((a) and (b) ) and geosynchronous ( (c) and (d) )ULF

power with the relativistic electron index Fe1.2 for the 1994 Event. The data for both indices is processed with 1 hour resolution. See

subsection 4.1 for a description of the figures.
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(a) (b)

(c) (d)

Figure 5. Same as in Figure 4 but with a 24 hour moving average of each indices.
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(a) (b)

(c) (d)

Figure 6. Same as in Figure 4 but for the 1993 event of Rostoker et al. (1998).
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(a) (b)

(c) (d)

Figure 7. Same as in Figure 5 but for the 1993 event of Rostoker et al. (1998).
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(a) (b)

(c) (d)

Figure 8. Dependence of the mutual information and Pearson correlation for ground ((a) and (b) ) and geosynchronous ( (c) and (d) )ULF

power with the 130 keV electron index Fe130 for the 1994 Event. The data for both indices is processed with 1 hour resolution.
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(a) (b)

(c) (d)

Figure 9. Same as in Figure 8 but with a 24 hour moving average of each indices.
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(a) (b)

(c) (d)

Figure 10. Same as in Figure 8 but for the 1993 event of Rostoker et al. (1998).
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(a) (b)

(c) (d)

Figure 11. Same as in Figure 9 but with a 24 hour moving average.
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Event Flux

index

ULF

index

Pearson

Correlation

Mutual

Information

Adjusted

correlation

Lag

(hours)

1993 Fe130 Geo 0.57 ± 0.03 0.63 ± 0.04 0.76± 0.02 17

1993 Fe130 Ground 0.54 ± 0.03 0.66 ± 0.04 0.77± 0.01 1

1994 Fe130 Geo 0.55 ± 0.01 0.44 ± 0.02 0.68 ± 0.02 0

1994 Fe130 Ground 0.68 ± 0.01 0.67 ± 0.01 0.78± 0.01 0

1993 Fe1p2 Geo 0.41 ± 0.03 0.42 ± 0.04 0.66± 0.03 42

1993 Fe1p2 Ground 0.43 ± 0.03 0.36 ± 0.04 0.63 ± 0.04 50

1994 Fe1p2 Geo 0.52 ± 0.02 0.40 ± 0.02 0.65 ± 0.01 67

1994 Fe1p2 Ground 0.59 ± 0.02 0.49 ± 0.02 0.70 ± 0.01 48

Table 1: Maximum values in correlation & mutual Information for positive lags and associated adjusted correlation.425
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