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Abstract. We investigate if the presence of meteoric smoke particles (MSP) influences the electron temperature during artificial

heating in the D-region. By transferring the energy of powerful high frequency radio waves into thermal energy of electrons,

artificial heating increases the electron temperature. Artificial heating depends on the height variation of electron density. The

presence of MSPs can influence the electron density through charging of MSPs by electrons, which can reduce the number

of free electrons and even result in height regions with strongly reduced electron density, so-called electron bite-outs. We5

simulate the influence of the artificial heating by calculating the intensity of the upward propagating radio wave. The electron

temperature at each height is derived from the balance of radio wave absorption and cooling through elastic and inelastic

collisions with neutral species.

The influence of MSPs is investigated by including results from a one-dimensional height-dependent ionospheric model

that includes electrons, positively and negatively charged ions, neutral MSP, singly positively and singly negatively charged10

MSP and photo chemistry such as photo ionization and photo detachment. We apply typical ionospheric conditions and find

that MSPs can influence both the magnitude and the height profile of the heated electron temperature above 80 km, however

this depends on ionospheric conditions. During night, the presence of MSPs leads to more efficient heating, and thus a higher

electron temperature, above altitudes of 80 km. We found differences of up to 1000 K in electron temperature for calculations

with and without MSPs. When MSPs are present, the heated electron temperature decreases more slowly. The presence of15

MSPs does not much affect the heating below 80 km for night conditions. For day conditions, the difference between the

heated electron temperature with MSPs and without MSPs is less than 25 K.

We also investigate model runs using MSP number density profiles for autumn, summer and winter. The night-time electron

temperature is expected to be 280 K hotter in autumn than during winter conditions, while the sunlit D-region is 8 K cooler for

autumn MSP conditions than for the summer case, depending on altitude. Finally, an investigation of the electron attachment20

efficiency to MSPs shows a significant impact on the amount of chargeable dust and consequently on the electron temperature.

1 Introduction

Meteoric smoke particles (MSP) are small nanometer-sized dust particles (Hunten et al., 1980; Plane, 2012). They can change

the D-region charge balance by influencing the chemical processes through charging of MSP by electrons and ions [cf. Bau-
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mann et al. (2015)]. By changing the charge balance, MSPs can influence artificial heating. The overall charge balance in the25

D-region is complex with positive ions, negative ions and cluster ions (Verronen et al., 2016).

The MSPs form as a result of meteor ablation that deposits the meteoric material in the higher atmosphere, which condense

to MSPs of sizes up to a few nanometers (Plane, 2004). Measurements on-board rockets have detected both negatively and

positively charged MSPs, indicating that MSPs can influence plasma densities in the D-region through charging of MSPs by

electrons and ions (Friedrich et al., 2012). Charging of MSPs influences the charge balance mainly through electron attachment30

to MSPs, which can results in height regions with reduced electron density, so-called electron bite-outs. Electron bite-outs

change the height profile of the electron density and this reduction in electron density occurs in altitude regions where the

MSPs are most abundant. Electron bite-outs within the height profile of the electron density can affect the electron temperature

during artificial heating, as shown by Kassa et al. (2005).

A heater transmits powerful high-frequency radio waves into the ionosphere during artificial heating experiments. In the35

collisional plasma of the ionospheric D-region, electrons absorb the radio wave energy transmitted from the heater and heat

up, increasing the electron temperature. Consequently, the intensity of the radio wave decreases with height (Rietveld et al.,

1986; Belova et al., 1995; Kero et al., 2000, 2008). Artificial heating can also induce different phenomena in the ionosphere,

like for instance ion upwelling (Kosch et al., 2010) and artificial optical emission (Kosch et al., 2000, 2014) in the F-region. In

the D-region, researchers have found that artificial heating can influence Polar Mesospheric Summer Echoes (PMSE) (Chilson40

et al., 2000; Havnes et al., 2004; Biebricher and Havnes, 2012). The PMSE form in the presence of atmospheric turbulence

and charged ice particles and it is assumed that the presence of MSPs in the D-region facilitates the formation of ice particles.

The aim of our study is to numerically model the electron temperature during artificial heating and include the height varia-

tion of electron bite-outs by using an ionospheric model (Baumann et al., 2013) with MSPs. As a comparison, we also model

without MSPs. The one-dimensional height-dependent ionospheric model is for quiet ionospheric conditions and includes45

MSPs and photochemistry such as photoionization and photodetachment. We calculate the artificial heating with different ra-

dio wave frequencies and higher or lower radio wave power to investigate if this influences the electron temperature and to

check the robustness of our results. We will compare night and day conditions to see if a higher electron density during daytime

influences the modelled electron temperature. In addition, we investigate the seasonal variation of the MSPs abundance, as well

as the role of the electron attachment efficiency to MSPs for the heated electron temperature.50

This paper is organized as follows. In part 2 we present a detailed theoretical background and numerical modelling of

artificial heating in the D-region. Part 3 gives a brief description of the ionospheric model. In part 4 we introduce the results.

Part 5 presents the discussion.

2 Artificial heating in the D-region

Powerful high frequency radio waves can heat up electrons in the ionospheric D-region by artificial heating experiments.55

The higher temperature of the electrons can lead to various phenomena in the whole ionosphere (e.g. Robinson (1989) and

references therein). Artificial heating increases the electron temperature by transferring the radio wave energy into thermal
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energy of electrons (Rietveld et al., 1986; Kero et al., 2007, 2008). Modelling of artificial heating in D-region altitudes shows

an increase in electron temperature of a factor of 10 (Belova et al., 1995; Kero et al., 2000). The EISCAT high power high

frequency heating facility located in Tromsø, Norway transmits powerful high-frequency radio waves into the ionosphere60

during artificial heating experiments. The ESICAT radar, also located in Tromsø, Norway, can observe the ionosphere during

these heating experiments. The EISCAT heating facility in Tromsø has three different antenna arrays consisting of crossed

full-wave dipoles with a frequency range of 3.85-8 MHz. There are 12 transmitters that can adjust the power output from 200

MW to 1200 MW, depending on the used radio frequency. The dipoles can transmit ordinary (O) circular polarization mode or

extraordinary (X) circular polarization mode (Rietveld et al., 2016). The following model of the heated ionosphere, described65

in the next section, uses these experimental parameters of the EISCAT heating facility (Rietveld et al., 1993).

2.1 Description of model

This section describes the physical background of the artificial electron heating. For the implementation of the artificial electron

heating, we rely on earlier work done by Rietveld et al. (1986); Belova et al. (1995); Kero et al. (2000); Kassa et al. (2005); Kero

et al. (2007). Note that the model described in this section only covers the lower ionosphere. The heater transmits a powerful70

high frequency radio wave that propagates through the cold, magnetized, collisional plasma of the ionospheric D-region. The

intensity I, or energy of the radio wave varies with height h according to:

dI

dh
=−2kI (1)

where k is the absorption coefficient, given as:

k =−ωIm(n)

c
(2)75

In Eq. 2, ω is the angular frequency of the heating radio wave, Im(n) is the imaginary part of the refractive index n and c is

the speed of light. When integrated, Eq. 1 in combination with Eq. 2, yields the following expression for the intensity:

I(h) =
ERP

4πh2
exp

2ω

c

h∫
0

Im(n)dh

 (3)

where ERP is the effective radiated power. For solving Eq. 3 we need an expression for the refractive index n. We can derive

the refractive index by using the Appleton-Hartree dispersion relation, which describes the radio waves propagation in a cold80

magnetized plasma and which can be applied to the ionospheric D-region. It describes the refractive index as:

n2 = 1− X

1− iZ − (Y sinθ)2

2(1−X−iZ) ±
√

(Y sinθ)4

4(1−X−iZ)2 +(Y cosθ)2
(4)
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where θ is the angle between the wave vector and the direction of the magnetic field. Here, (+) and (−) represents the

ordinary and extraordinary polarization modes, respectively. Note that the refractive index is complex n= n1 + in2. If the

imaginary part is less than zero, the wave is damped. The wave damping is caused by wave energy loss through absorption by85

the plasma while the wave propagates through the ionosphere. Due to its lower mass, electrons absorb the energy and are thus

heated, while ions and neutrals remain unheated in comparison. The dimensionless X, Y and Z are normalized frequencies,

defined as:

X =
ω2
pe

ω2
=

Nee
2

ε0meω2
(5)

Y =
ωge

ω
=

eB

me
ω (6)90

Z =
νen
ω

(7)

where Ne is electron density,e is unit charge, ε0 is the permittivity of vacuum, me is electron mass, B is the Earth’s magnetic

field and νen is the electron-neutral collision frequency. How the electron-neutral collision frequency from Eq. 7 depends on

electron temperature is taken from Dalgarno et al. (1967):

νen = 1.7× 10−11[N2]Te +3.8× 10−10[O2]
√

Te +1.4× 10−10[O]
√
Te (8)95

where [N2] is the number density of molecular nitrogen, [O2] is the number density of molecular oxygen, [O] is the number

density of atomic oxygen and Te is the electron temperature. Neutral densities are in units of cm−3 and temperature in K.

Through νen the refractive index depends on the electron temperature. The electron-neutral collision frequency is high in the

D-region due to the relatively low electron density in comparison to the neutral density. Therefore, electron ohmic heating is the

dominant D-region ionospheric response to heating. In ohmic heating, electrons oscillating parallel to the radio wave electric100

field collide with neutrals. This causes a phase shift between the direction of the radio wave electric field and the direction of

electron oscillation. Overall, electrons are scattered in a random direction. This random motion of electrons leads to absorption

of wave energy, where the wave energy is transferred into thermal energy of electrons, increasing the electron temperature.

To find the increased electron temperature we use the electron energy balance equation, which describes local electron energy

conservation. Solving the electron energy equation gives us the electron temperature time variation due to energy input from105

the heater and cooling through collisions with neutrals. We have neglected thermal conductivity due to high neutral density in

the D-region and neglected plasma transport. The electron energy equation is then given as:

dTe

dt
=

2

3kbNe
(Q(Te)−L(Te)) (9)
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where kb is Boltzmann’s constant. Equation 9 is non-linear differential equation. Here Q(Te) is the power absorbed by

electrons per volume:110

Q(Te) = 2k(Te)I(h) =
2ω

c
Im(n)I(h) (10)

The electrons lose energy, and are thus cooled, through elastic and inelastic collisions with neutral species, where the inelastic

collisions can excite vibrational and rotational states. The sum of all energy losses is given by the energy loss function L(Te);

these are the electron cooling rates. Our cooling rates include vibrational and rotational excitation of molecular oxygen (Pavlov,

1998b) and of molecular nitrogen (Pavlov, 1998a), excitation of fine structure levels of atomic oxygen (Pavlov and Berringston,115

1999) and elastic collisions between electrons and neutral species (Schunk and Nagy, 1978). Due to the low electron density

in the D-region, we neglect electron-ion collision. More detailed descriptions of the electron cooling rates are in appendix B.

When the heater is switched on, the electron temperature increases from its initial temperature, which is equal to the neutral

temperature in the D-region, to a higher heated electron temperature. The heating time for this temperature increase is less

than 1 ms due to the high collisions frequency νen in the D-region. After less than 1 ms the electron temperature has reached120

thermal equilibrium where dTe/dt= 0. In cases where the heating modulation time is much longer than the heating time for

the electron temperature, we can simplify Eq. 9 to:

Q(Te)−L(Te) = 0 (11)

2.1.1 Implementation of model

To compute the electron temperatures during heating we numerically solve Eq. 11. At the first height the intensity is I0 =125

ERP/4πh2, the undamped radio wave. We then compute Q(Te) from Eq. 10 by using the intensity I0, where Q(Te) is

a function of Te. We use the intensity I0 to solve Q(Te)−L(Te) = 0 for the electron temperature by using an algorithm

that combines the inverse quadratic interpolation method, bisection method and secant method (Brent, 1973; Forsythe et al.,

1977). By solving Q(Te)−L(Te) = 0 we find the zero-point of Eq. 11, which gives us a new electron temperature. This new,

modified electron temperature changes the refractive index since the electron-neutral collision frequency depends on electron130

temperature. With the changed refractive index, we recalculate the intensity, taking into account the loss due to absorption. We

compute the intensity numerically by approximating the integral in Eq. 3 as a sum:

I(h) =
ERP

4πh2
exp

2ω

c

h′=h∑
h′=60km

Im(n(h′))∆h

 (12)

where the first part ERP/4πh2 represents the undamped radio wave and the part in the exponential function represents the

damping effect due to absorption. The distance between each height is ∆h= (h′)− (h′−1). For our case ∆h= 1 km and ∆h135

is constant for all altitudes. In the next iteration, the intensity has changed, so there is a new zero-point for Q(Te)−L(Te) = 0,
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which we compute. Figure 1 shows Q - L as a function of Te. This figure illustrate that loss due to absorption can change

the location of the zero-point of Q - L. We have used the following parameters to calculate Q - L: Height 75 km, ionospheric

night conditions, model run with the presence of MSPs, frequency 5 MHz and power 700 MW. Figure 1 shows the zero-point

of Q - L with I0, illustrated as a blue-coloured star and the zero-point of Q - L with the changed intensity I1, illustrated as a140

magenta-coloured star. We see in Fig. 1 that the zero-point of Q - L is different for I0 and I1. This process with a new, modified

electron temperature, which changes the intensity, is repeated in an iteration scheme. The neutral temperature is the starting

point in the iteration scheme. The iteration scheme is repeated until the change in the electron temperature is very small, i.e.

when Te converges. This equation visualizes the iteration for the intensity:

I(h+1) = I0 − dI(h)− dI(h+1) (13)145

where I0 = ERP . Here dI(h) represents absorption at heights below and dI(h+1) represents absorption at the current height.

Before we move to the next height, we sum all the absorption, so that for the next height we take into account all absorption

below. In the next height, we repeat the procedure described for the first height and calculate the heated electron temperature

and the new intensity. This is done for all heights, moving upward from the initial height to the final height. Our altitude range

is 60-120 km. The ionospheric D-region varies in altitude range from about 50 km to 100 km, however, we model up to 120150

km to see if the electron temperature at altitudes above 100 km is influenced by the presence of MSPs at lower altitudes below.

We model the height-dependent heated electron temperature with initial height profiles for the following parameters: Earth’s

magnetic field, electron density, neutral temperature, neutral densities of molecular nitrogen, molecular oxygen and atomic

oxygen. For Earth’s magnetic field, we use a dipole approximation (Brekke, 2013) . The magnetic field goes into Eq. 6, which

we use to compute the refractive index in Eq. 4. We compare day and night conditions to see if a higher ionization level, as155

during day condition, has an influence on the heated electron temperature. The used electron density height profiles during day

and night conditions come from an ionospheric model by Baumann et al. (2013). The neutral temperature and neutral densities

are from MSISE-90 model (Hedin, 1991; Picone et al., 2002) with the same date, time and location as used for the ionospheric

model. The parameters for the EISCAT heating radio wave include polarization, radio wave frequency and effective radiated

power (ERP). The model calculations are done with X-mode transmission polarization. For the radio wave frequency and160

ERP, we assume a number of different typical values to see if this influences the heated electron temperature with MSPs and

without MSPs. We ran the model for four different cases, see Table 1 (Erik Varberg, personal communication). Figure 2 shows

a schematic on how we computed the heated electron temperature by combining artificial heating and the electron density from

the ionospheric model. In the next section we briefly describe the ionospheric model.

3 Background ionospheric model165

Here we give a brief description of a one-dimensional height-dependent ionospheric model for the D-region, which includes

MSPs, developed by Baumann et al. (2013). For the full description, see Baumann et al. (2013) and references therein. The
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Figure 1. Illustration of Q(Te)−L(Te) as a function of electron temperature with intensity I0 (the undamped radio wave) and I1 (radio

wave with damping). Here I0 > I1. The units of Q(Te)−L(Te) is energy per volume per second eVm−3s−1. With a different intensity, we

change the location of the zero-point, where Q(Te)−L(Te) = 0. The zero-point is marked as a blue star for I0 or a magenta star for I1. We

have used the following parameters to calculate Q - L: Height 75 km, ionospheric night conditions, model run with the presence of MSPs,

frequency 5 MHz and power 700 MW.

Table 1. The frequencies and effective radiated power (ERP) used in the study.

Case 1 Case 2 Case 3 Case 4

4 MHz 5.5 MHz 5.5 MHz 7.5 MHz

200 MW 300 MW 600 MW 1200 MW

one-dimensional height-dependent ionospheric model is run for quiet ionospheric conditions between heights of 60-120 km

and includes electron, positively and negatively charged ions, neutral MSP, singly positively and singly negatively charged

MSP. Multiply charged dust is unlikely to occur since the MSPs are very small. Initial conditions for the height and size-170

dependent MSP number density profile come from Megner et al. (2006). The size range is from 0.2 nm to 41 nm. Above

100 km, the number density of MSPs is assumed to be very small. Megner et al. (2006) calculates the MSP number density

profile by using a one-dimensional model, where the MSP height distribution varies with size. The number density of smaller

MSPs (less than 15 nm) increases with altitude, while larger sizes are more abundant at lower altitudes between 60-70 km.

Overall the number density of MSPs increases from 60 km to a maximum at around 80-83 km, and then decreases above. For175
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Neutral densities O, O2 , N2

Neutral temperature Tn

Heating
radio wave

Frequency
ERP 
Polarization

Dipole
approximation

MSISE-90

Date
Time 
Location 
Ap index

F10.7 flux

Ionospheric model

Earth’s magnetic field

1. Initially I(h0) = ERP
2. Then find Te for Q(Te ) – L(Te) = 0
3. Compute plasma refractive index
4. Compute intensity by  I(h+1) = I0 – dI(h) – dI(h+1)
5. Repeat until Te converges

Artificial heating

Modelling during heating

Te day conditons Te night conditions

With MSP No MSP With MSP No MSP

Day conditions Night conditions

With MSP No MSP With MSP No MSP
Ne Ne Ne Ne

Figure 2. Schematic showing how we combined artificial heating and the electron density from the ionospheric model in order to compute

the heated electron temperature. The parameters for artificial heating include frequency, effective radiated power (ERP) and polarization of

the heating radio wave, Earth’s magnetic field and neutral densities and neutral temperature. We perform the modelling during heating at

each height from below before going to the next height, moving upward from the initial height to the final height.

an overview of the different MSP number density profiles, we refer the reader to figure A1 in the appendix. For the charging

of a MSP by electrons, the electron attachment efficiency is the probability of a MSP capturing an electron. This probability

is size-dependent. Megner and Gumbel (2009) assume a probability of zero for sizes less than 0.25 nm, a probability of 1 for

sizes larger than 1.5 nm and for sizes between 0.25 and 1.5 nm, they assume a probability that increases linearly. Baumann

et al. (2013) applies the electron attachment efficiency (γcharging) from Megner and Gumbel (2009) to the ionospheric model.180

Megner and Gumbel 2009 proposed this charging efficiency based on a laboratory study on the charging of water ice clusters.

The size dependence of the charging efficiency is probably a function of dust composition. Therefore, we add two alternative

scenarios of this efficiency to study its possible impact on the electron heating. Table 2 summarizes the different electron

attachment efficiencies applied in our study. The computation scheme includes chemical reactions like the standard plasma

reactions for electrons and ions, plasma capture reactions by MSP and photo reactions such as photo ionization and photo185

detachment of MSP. The standard plasma reactions include ionization, dissociative recombination, electron attachment to

neutrals, electron detachment from negative ions and ion-ion recombination. Figure 3 shows a schematic of the underlying

ionospheric model. By solving the time-dependent rate equations for the six species, the ionospheric model computes number

densities of electrons, ions and MSPs. The rate equations describes how the concentration of a given species varies with time

by looking at the local production rate and local loss rate. The modelling is done with and without the MSPs, as a comparison.190

For the initial conditions, the following parameters are taken from the Sodankylä Ion Chemistry (SIC) model (Turunen et al.,
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Figure 3. Schematic of the underlying ionospheric model. Grey shaded reactions are SIC reactions rates generalized to the reduced set of

ionospheric constituents (Nin- negative ions, Ne- electrons, Nip- positive ions), green shaded are charge carrier capture processes by MSP

(Pn- negative MSP, P - neutral MSP, Pp- positive MSP) and red shaded are the photo detachment and photo ionization of MSP, where the

wiggly arrow indicates the incoming solar photon that detaches an electron from the surface of a neutral or negatively charged MSP. The

k1 − k13 are reaction rates coefficients. For details on the individual reactions see Baumann et al. (2013).

1996): number densities of electrons, positive ions and negative ions, the temperature of ions and electrons, the reaction rate

coefficients for the standard plasma reactions and average ion mass. The SIC model was run for conditions on 8. September

2010 at Andenes, Norway, 69◦ North and 16◦ East at 23:55 LT (night conditions) and 12:15 LT (day conditions). We ran

the ionospheric model with different MSP number density profiles: Autumn conditions (8. September), winter conditions (1.195

January) and summer conditions (20. July). The model runs with different MSP number densities are performed with the

following autumn ionospheric conditions: autumn MSP distribution for night and day conditions, winter MSP distribution

for night conditions and summer MSP distribution for day conditions. The MSP winter and summer distribution come from

Megner et al. (2008).
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Table 2. The different electron attachment efficiencies (γcharging), where r is the MSP radius. ’MSP, I’: the probability is 1 for all MSP

sizes. ’MSP, II’: the probability is zero for MSP sizes below 0.25 nm, between 0.25 to 1.5 nm the probability increases linearly and for sizes

larger than 1.5 nm the probability is 1. ’MSP, III’: the probability is zero for MSP size below 1.5 nm and 1 for sizes larger than 1.5 nm. Note

that ’MSP, II’ come from Megner and Gumbel (2009).

MSP, I MSP, II MSP, III

γcharging =

{
1, for all r γcharging =


0, for r < 0.25 nm

0.8 · r− 0.2, for 0.25≤ r ≤ 1.5 nm

1, for r > 1.5 nm

γcharging =

0, for r ≤ 1.5 nm

1, for r > 1.5 nm

4 Results200

4.1 Night conditions

This section presents results for the electron temperature modelled during artificial heating with and without the presence of

MSPs for night condition. The main results are that from 80 km and above the heated electron temperature is higher when

MSPs are present, and this applies to all cases with different frequencies and ERP. In Fig. 4 we show results for electron

density influenced by MSPs. As a comparison, we ran the model without the influence of MSPs. We see in Fig. 4 that there is205

a reduction in electron density, an electron bite-out, due to the presence of MSPs, predominantly between heights 80-100 km.

There is an electron bite-out between 70-80 km, but it is significantly smaller than between 80-100 km. Between 100-120 km,

the electron bite-outs are not present. We see that electron bite-outs change the height profile of the electron density.

Figure 5 presents results for the heated electron temperature for cases 1-4. The heated electron temperature is computed

with the electron density from Fig. 4. In Fig. 5 we see that the electron temperature is higher for altitudes above 80 km when210

MSPs are present. The shape of the height profile varies as well, where the heated electron temperature decreases more slowly

when MSPs are present so that the shape of the height profile is more flat. Without MSPs, the electron temperature decreases

faster and it has a different overall shape. Below 80 km, the heated electron temperature is the same with and without MSPs.

A comparison of the four different cases shows similar results for the heated electron temperature in Fig. 5. The electron

temperature is higher when MSPs are present for all five different cases and the shape is also similar. We also see that a higher215

ERP results in a higher electron temperature, where Te reaches almost 3000 K for case 4 with ERP 1200 MW.

Figure 6 shows the absolute difference between the heated electron temperature modelled with and without MSPs, i.e. how

much higher the heated electron temperature is with MSPs compared to without MSPs. The difference in Te increases from 80

km and reaches a maximum between 90-100 km. From 100 km and on, the difference in Te starts to decrease. The difference

in Te increases for higher ERP. For case 4 with a frequency of 7.5 MHZ and ERP 1200 MW, the difference in Te at around220

100 km is almost 1000 K, while for case 3 with a frequency of 5.5 MHZ and ERP 600 MW the difference in Te at around 95

km is 700 K. For the lower ERP of 200 MW with frequency 4 MHZ (case 1) or ERP of 300 MW with frequencies 5.5 MHZ

(case 2), the difference in Te is between 200-500 K at 95 km.
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Figure 4. Electron density during night conditions, where the electron density comes from the ionospheric model. The legend shows model

run with and without the MSPs.

In Fig. 5 a small feature appears in some of the plots when the electron temperature is around 1500 K. The location of

the feature appears at different altitudes, varying between 80-110 km. Out of the four different cases that we considered for225

comparison (4 cases with MSPs and 4 cases without MSPs, so 8 all together), the feature appears in 4 out of 8 plots, 1 with

MSPs and 3 without MSPs.

In Fig. 7 we show results for MSP winter distribution (night ionospheric conditions) and MSP summer distribution (day

ionospheric conditions). Panel a) shows electron density, while panel b) shows heated electron temperature. For model run

with MSPs, a comparison of electron densities in panel a) of Fig. 7 and Fig. 4 show a slightly higher electron depletion below230

80 km in the winter case compared to the autumn case. However, above 80 km, the electron depletion is higher for the autumn

case. For the winter case, the reduction in electron density extends to around 90 km, while it extends to around 100 km for the

autumn case. In Fig. 5, the heated electron temperature for the autumn case is higher above 80 km compared to the winter case

in panel b) of Fig. 7; the difference is less than 280 K. Our results in Fig. 7 for the summer case are quite similar to the autumn

case. This applies to the behaviour of both the electron density and the heated electron temperature. The difference between235

the heated electron temperature for the summer case and the autumn case is less than 8 K.

Figure 8 shows model results for different cases of electron attachment efficiencies of MSPs, where panel a) shows electron

density and panel b) shows heated electron temperature. In this study, we concentrate on three different scenarios for size-

dependent probabilities of electron attachment to MSPs: ’MSP, I’ - the probability is 1 for all MSP sizes. ’MSP, II’ - the
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Figure 5. Night condition results for modelled electron temperature during heating as a function of height for cases 1-4. The legend shows

model run with and without the MSPs and for the different cases 1-4.

probability is zero for MSP sizes below 0.25 nm, between 0.25 nm to 1.5 nm the probability increases linearly and for sizes240

larger than 1.5 nm the probability is 1. ’MSP, III’ - the probability is zero for MSP size below 1.5 nm and 1 for sizes larger than

1.5 nm. See also table 2 for more details. We see in panel a) that the magnitude of the reduced electron density depends on the

electron attachment efficiency. In the case ‘MSP I’, the electron density is severely reduced because more MSPs are available

to be charged. If there is no charging for sizes below 1.5 nm, the electron density is quite similar to the electron density when

no MSPs are present. This applies to the electron temperature in panel b) as well. For the case where the probability is 1 for all245

sizes (MSP, I), the heated electron temperature remains almost constant from 90-120 km. The temperature difference between

’MSP, I’ and ’MSP, III’ goes up to 750 K.

4.2 Day conditions

This section presents results for electron temperature modelled during artificial heating with and without the presence of MSPs

for day conditions. Panel a) of Fig. 9 shows electron density with and without MSPs. As for night conditions the electron250

density comes from the ionospheric model. We see that the electron bite-outs are much smaller in Fig. 9 compared to the

night condition results in Fig. 4. Panel b) of Fig. 9 shows the heated electron temperature for cases 1-4. We see that the heated

electron temperature is the same with and without MSPs. We find that the absolute difference between the electron temperature

modelled with and without MSPs is less than 25 K for all cases 1-4. Compared to night conditions, the day conditions electron
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Figure 6. Absolute difference between the electron temperature modelled with and without the MSPs during night conditions. The legend

shows model run for the different cases 1-4.

temperature is lower. For cases 1-3 during day conditions, the electron temperature is below 2000 K for all altitudes. At around255

90 km, the electron temperature is back to the neutral temperature for all cases 1-4.

5 Discussion

Both Kero et al. (2007) and Senior et al. (2010) found that current models most likely overestimate artificial heating in the

D-region compared to observations. Why the models overestimate artificial heating in the D-region remains an open question.

Kero et al. (2007) studied how artificial heating influences cosmic radio noise absorption. Their study showed that the observed260

enhancement of cosmic radio noise absorption during heating is lower than predicted theoretically. Senior et al. (2010) used a

cross-modulation technique with the EISCAT radar. They found that the model overestimates the diagnostic wave absorption.

An explanation for the discrepancy between models and observations suggested by Senior et al. 2011 is that the modeled heater

ERP is lower than predicted because the assumption of a perfect reflecting ground around the antenna might not be applicable.

Senior et al. 2011 found that the overestimation is reduced when modelling the ERP with more realistic ground assumptions.265

In the study by Senior et al. (2010), the authors note that electron bite-outs located at PMSE layer altitudes might influence

the model, but that the influence is probably small, because the bite-outs are located too high in altitude. They investigate the

influence of the electron bite-outs by scaling the whole electron density profile with a factor of 2 or 0.5. However, they do not
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Figure 7. Results for MSP winter distribution (night ionospheric conditions) and MSP summer distribution (day ionospheric conditions).

The frequency is 5.5 MHz and the ERP is 600 MW. Panel a) shows electron density and panel b) shows heated electron temperature. We also

show model run without MSPs. In the legend, ’S’ stands for summer conditions, while ’W’ stands for winter conditions.

include the height variation of the electron density profile when electron bite-outs are present. We find that electron bite-outs

are only present at certain altitudes. The magnitude of the electron bite-outs varies within these altitudes, for instance, the270

electron bite-out is significantly larger between 80-100 km compared to between 70-80 km. In our study, we have modelled

the electron temperature during heating and included the height variation of the electron bite-outs. We have included the height

variation of electron bite-outs by using the ionospheric model with MSPs, which presents a simplified model of the D-region

by including height and size-dependent MSP distribution in a reaction scheme with electrons, ions and neutral and charged

MSPs. This enables us to have a more realistic representation of the height variation of the electron bite-outs. In a future study275

we will make a detailed comparison of our results to observations of the electron temperature during heating. This detailed

comparison can investigate if the presence of MSPs explain the discrepancy between model and observations.

Figure 5 for night conditions show that the electron temperature is higher and decreases more slowly when MSPs are present.

An explanation for why the heated electron temperature decreases more slowly is that with electron bite-outs at certain altitudes,

the heating above these heights will be increased since less of the wave energy is absorbed within the electron bite-outs. The280

absorption of wave energy depends on electron density and the absorption decreases with decreasing electron density. We see

this effect in Fig. 10 , which shows absorbed radio wave energy as a function of height. Here, less wave energy is absorbed when

MSPs are present. More wave energy is absorbed at higher altitudes, slightly above where the electron bite-outs are largest in
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Figure 8. Result for different electron attachment efficiencies. Panel shows a) electron density and panel b) shows heated electron temper-

ature. The legend describes the different size-dependent probabilities for electron attachment to MSP: ’MSP, I’ - the probability is 1 for all

MSP sizes. ’MSP, II’ - the probability is zero for MSP sizes below 0.25 nm, between 0.25 nm to 1.5 nm the probability increases linearly

and for sizes larger than 1.5 nm the probability is 1. ’MSP, III’ - the probability is zero for MSP size below 1.5 nm and 1 for sizes larger than

1.5 nm. See table 2 for more details on the different electron attachment efficiencies. We also show model run without MSP.

magnitude. The cooling rates also depend on electron density and decrease at higher altitudes due to a lower electron-neutral

collision frequency since the neutral density is lower. The electron cooling - heating equality is reached at higher electron285

temperatures as more wave energy remains in the MSPs case compared to the case without MSPs. An electron bite-out at

lower altitudes can lead to an increased electron temperature at higher altitudes above.

Our results in Fig. 8 for the different electron attachment efficiencies indicates that the heated electron temperature height

profile is very dependent on the amount of chargeable MSPs. Increasing the amount of chargeable MSPs leads to a nearly

vanishing electron density at altitudes between 80 and 100 km. This aspect of MSPs is not very well known and could be290

investigated further. Note that the electron density profile in case ’MSP,I’ might be unrealistically low since it is around one

order of magnitude below the electron density measured during ECOMA-7 rocket flight (between 80-95 km), which is the

lowest electron density ever measured at auroral latitudes (Friedrich et al., 2012). Given that the case ’MSP,I’ is indeed very

unlikely, indicates that there are either not that many small MSPs (sizes below 0.25 nm) or that the smaller MSPs are not

charged. The modelling with different electron attachment efficiencies (different charging) and with different MSP number295
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Figure 9. Results for day conditions. Panel a) shows the electron density, which come from the ionospheric model. Panel b) shows the the

modelled electron temperature during heating as a function of height. The legend show model run with and without the MSP, as well as

model run for the different cases 1-4.

density profiles indicates that the night-time D-region electron temperature varies with the number of chargeable MSP, which

again varies with the MSP number density and the charging efficiency.

The results of our study show that the frequency of the transmitted radio wave only plays a minor role, lower frequency only

slightly shifts the start of the heated ionosphere to a higher altitude. We also see that the increased electron temperature due

to the presence of MSPs extends up to 120 km in the E-region. Our model for the heated electron temperature might not be300

applicable for the E-region, however, this is beyond the scope of this paper. The results from this study agree with Kassa et al.

(2005), where an electron bite-out inserted as a linearly decreasing ’toy model’ between 84-86 km during PMSE conditions

resulted in an increased modelled electron temperature within and above the electron bite-out.

Panel b) of Fig. 9 shows that day condition electron temperature is the same with and without MSPs. This indicates that for

day condition, MSPs are less important for the heated electron temperature. A higher ionization level, and thus a much higher305

electron density, means that loss of electrons, like electron attachment to MSPs, is less important. Generally, the electron

temperature is lower for day conditions. This is because the electron density is higher during the day, also at lower heights.

The electron density of panel a) in Fig. 9 is 2.5 · 106 m−3 at 60 km for day conditions, while for night conditions the electron

density in Fig. 4 is 2.6 · 104 m−3 at 60 km. With a higher electron density as during day conditions, the radio wave energy is

absorbed already at lower heights.310
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Figure 10. Absorbed radio wave energy Q (= L) as a function of height for night condition and case 2 (5.5 MHz and ERP 600 MW). The

legend show model run with and without the MSP. We show this figure to illustrate how the absorbed power varies with and without MSPs.

In Fig. 5 there is a feature in some of the plots of the heated night condition electron temperature. This feature can resemble

a small second maximum, or it might just be an artefact. It appeared when we included the temperature dependence of the

cooling rates for vibrational excitation of molecular nitrogen; the values from Pavlov (1998a) that we use are different for the

temperatures 300≤ Te ≤ 1500 K and for those Te > 1500 K. The feature that we note is at electron temperature around 1500

K. The feature disappears if we apply the same values for vibrational excitation of molecular nitrogen over the entire range315

of temperatures and disregard the difference for the Te ≤ 1500 K case. Kero et al. (2008) found a second maximimum in the

EISCAT incoherent scatter observations for the heated electron temperature in the D-region, which they could not explain.

The feature in Fig. 5 might be a second maximum or it might be an artefact caused by problems in the numerical modelling

when switching between values for Te ≤ 1500 K and Te > 1500 K. Whether the feature is an artefact or not is unknown at the

present and can be investigated further. The feature is not seen in the day condition electron temperature of panel b) in Fig. 9.320

6 Conclusions

The presented model calculations show that the presence of MSPs can influence the electron temperature during artificial

heating. The influence of the MSPs varies with ionospheric conditions. For night conditions, the results show a higher heated

electron temperature above altitudes of 80 km when MSPs are present. We found differences of up to 1000 K in temperature
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for calculations with and without MSPs. Below 80 km of altitude for night conditions the difference in temperature are small325

for model calculations with and without MSPs. For day conditions, the difference between the heated electron temperature

with MSPs and without MSPs is less than 25 K. This study indicates that MSPs can influence both the magnitude and shape

of the heated electron temperature above 80 km, however this depends on ionospheric conditions.

Furthermore, we model with different MSP number density profiles for autumn, summer and winter. The results show 280

K hotter night-time electron temperature for autumn compared to winter, while for the daytime electron temperature, the330

autumn case is 8 K cooler than the summer case. However, this varies with altitude. Finally, our results shows that the electron

attachment efficiency influences the heated electron temperature by impacting the amount of chargeable MSPs. In future

studies, we will model the D-region electron temperature during artificial heating with a non-Maxwellian electron velocity

distribution, possibly combining it with our study about artificial heating and MSPs.

Code and data availability. A function that computes the electron temperature and radio wave intensity during artificial heating, including335

the electron cooling rates, is available at Myrvang (2021). Data sets, which contain electron density altitude profiles from the background

ionospheric model (Baumann et al., 2013), can be found at Baumann and Myrvang (2021).

Appendix A: MSP number density profiles

Figure A1 shows the different MSP number density profiles: panel a) shows the MSP autumn case (Megner et al., 2006) for

8. September, panel b) shows the MSP winter case (Megner et al., 2008) for 1. January and panel c) shows the MSP summer340

case (Megner et al., 2008) for 20. July. The MSP number density profile for autumn and winter is quite similar. However, the

difference between the winter and summer case is quite significant, particularly for the larger sizes above 5 nm, which is more

abundant for the summer case and extends to a higher altitude as well.

Appendix B: Electron cooling rates

The electrons lose energy through collisions with the neutral gases. The dominant cooling processes related to [N2] and [O2]345

are the energy transfer via vibrational and rotational excitation [cf. Rietveld et al. (1986); Gustavsson et al. (2010)]. Even

though the concentration of atomic oxygen is very small between 60-100 km (as discussed by Senior et al. 2010), we will

include electron cooling rates for atomic oxygen [O] through the impact excitation of fine structure levels of its ground state

(see Pavlov and Berringston (1999) and references given there). We do this because our modelling is between 60-120 km, and

the concentration of atomic oxygen increases above 100 km. At 120 km, the concentration of atomic oxygen is in the same350

order of magnitude as the concentration of molecular oxygen. We here repeat the cooling rates that are used. The sum of the

electron cooling rates are the energy loss function, given as:
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Figure A1. Different MSP number density profiles for a) the autumn case, b) the winter case and c) the summer case. The autumn case is

from Megner et al. (2006), while the winter and summer case is from (Megner et al., 2008).

L(Te) = Lfs(O)+Lvib(N2)+Lrot(N2)+Lvib(O2)+Lrot(O2)+Lel(N2)+Lel(O2)+Lel(O) (B1)

The unit of L(Te) are in Jm−3s−1.

To describe the excitation of fine structure levels of atomic oxygen, we use Eq. 15 from Pavlov and Berringston (1999):355

Lfs(O) =Ne[O]D−1(S10{1− exp[98.9(T−1
e −T−1

n )]}

+S20{1− exp[326.6(T−1
e −T−1

n )]}

+S21{1− exp[227.7(T−1
e −T−1

n )]})

(B2)

The units of equation B2 is eVcm−3s−1 and Tn is the neutral temperature. Both Te and Tn are in K. The equation is based

on assuming that the electron velocity distribution is Maxwellian. The terms D, S21, S20 and S10 are:

D = 5+exp(−326.6 ·T−1
n )+ 3exp(−227.7 ·T−1

n ) (B3)

360

S21 = 1.863 · 10−11 (B4)
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S20 = 1.191 · 10−11 (B5)

S10 = 8.249 · 10−16 ·T 0.6
e exp(−227.7 ·T−1

n ) (B6)365

The Sij denote the transitions between the three fine structure levels of the atomic oxygen ground state.

For vibrational excitation of molecular nitrogen, we use Eq. 11 from Pavlov (1998a) for a Boltzmann distribution:

Lvib(N2) =Ne[N2]{1− exp(−E1/Tvib)}

×
10∑
v=1

Q0v{1− exp[vE1(T
−1
e −T−1

vib )]}

+Ne[N2]{1− exp(−E1/Tvib)}(exp(−E1/Tvib))

×
9∑

v=2

Q1v{1− exp[(v− 1)E1(T
−1
e −T−1

vib )]}

(B7)

where E1 = 3353 K is the energy of first vibrational level of [N2] and we assume that the vibrational temperature is equal to

the neutral temperature. The units of Lvib(N2) is eVcm−3s−1. Here, Q0v describes excitation transitions from ground states370

and Q1v describes excitation transitions from the first vibrational state. For Q0v and Q1v , we implement Eq. 19 and Eq. 20

from Pavlov (1998a), respectively:

logQ0v =A0v +B0vTe +C0vTe
2 +D0vTe

3 +F0vTe
4 − 16 (B8)

logQ1v =A1v +B1vTe +C1vTe
2 +D1vTe

3 +F1vTe
4 − 16 (B9)375

where the coefficients A0v,B0v,C0v,D0v,F0v to compute Q0v and A1v,B1v,C1v,D1v,F1v to compute Q1v come from

tables in Pavlov (1998a). For Q0v from Table 1 for 300≤ Te ≤ 1500 K and from Table 2 for Te > 1500 K. For Q1v from Table

3 for 1500≤ Te ≤ 6000 K. However, there is no table for Q1v for Te < 1500 K. Both Q0v and Q1v have units eVcm3s−1.

Rotational excitation of molecular nitrogen come from Eq. A2 in Pavlov (1998a):

C = 3.51 · 10−14 (B10)380

Lrot(N2) = C[N2]Ne(Te −Tn)Te
−0.5 (B11)
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The units of C and Lrot(N2) are eVcm3s−1K−0.5 and eVcm−3s−1, respectively.

For vibrational excitation of molecular oxygen we use Eq. 8 from Pavlov (1998b), which assumes a Boltzmann distribution:

385

Lvib(O2) =Ne[O2]

7∑
v=2

Q∗
0v{1− exp[vE1(T

−1
e −T−1

vib )]} (B12)

in units eVcm−3s−1 and where E1 = 2239 K is the energy of the first vibrational level of [O2] and we set Tvib = Tn. Here

Q0v describes excitation transitions from ground states. Q0v come from Eq. 11 in Pavlov (1998b):

Q∗
0v =Av exp{(1−BvTe

−1)(Cv +Dv sin[Fv(Te −Gv)])} (B13)

where the coefficients Av,Bv,Cv,Dv,Fv,Gv as a function of vibrational level come from Table 1 of Pavlov (1998b). For390

rotational excitation of [O2] we use Eq. 16, also from Pavlov (1998b):

CO2
= 5.2 · 10−15 (B14)

Lrot(O2) = CO2
[O2]Ne(Te −Tn)T

−0.5
e (B15)

where CO2 have units eVcm3s−1K−0.5 and Lrot(O2) has units eVcm−3s−1. For elastic collisions between electrons and395

neutrals (molecular nitrogen, molecular oxygen and atomic oxygen, respectively) we implement Eq. 43a, 43b, 43c from Schunk

and Nagy (1978):

Lel(N2) =Ne[N2]1.77 · 10−19Te(Te −Tn)(1− 1.21 · 10−4Te) (B16)

Lel(O2) =Ne[O2]1.21 · 10−18
√
T e(Te −Tn)(1+3.6 · 10−2

√
T e) (B17)400

Lel(O) =Ne[O]7.9 · 10−19
√
T e(Te −Tn)(1+5.7 · 10−4Te) (B18)

In Fig. B1 and Fig. B2 we present height profiles for electron cooling rates for night conditions. We show electron cooling

rates for a heated electron temperature. Figure B1 shows cooling rates where MSP are present, while Fig. B2 shows cooling

rates where MSP are not present. The frequency is 5.5 MHz and ERP is 600 MW.405

21



102 104 106 108 1010 1012 1014 1016

L [eVm-3s-1]

60

70

80

90

100

110

120

H
ei

gh
t [

km
]

L
fs

(O)

L
vib

(N
2
)

L
rot

(N
2
)

L
vib

(O
2
)

L
rot

(O
2
)

L
el

(N
2
)

L
el

(O
2
)

L
el

(O)

L

Figure B1. Night condition electron cooling rates with MSP as a function of height for a heated electron temperature. The frequency is 5.5

MHz and ERP is 600 MW. The legend shows the different cooling rates as described in this section.
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Figure B2. Night condition electron cooling rates without MSP as a function of height for a heated electron temperature. The frequency is

5.5 MHz and ERP is 600 MW. The legend shows the different cooling rates as described in this section.
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