Dynamics of Variable Dusk-Dawn Flow Associated with Magnetotail

Current Sheet Flapping

3

1

2

James H. Lane¹, Adrian Grocott¹, Nathan A. Case¹, Maria-Theresia Walach¹

5

¹ Department of Physics, Lancaster University, Lancaster, UK

8

Correspondence to: James Lane (j.lane@lancaster.ac.uk)

9 10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

magnetotail flaring becomes dominant.

11 Abstract

both slow (< 200 km s⁻¹) and fast (> 200 km s⁻¹) convective magnetotail flows is strongly governed by the Interplanetary Magnetic Field (IMF) B_{ν} conditions. The related 'untwisting hypothesis' of magnetotail dynamics is commonly invoked to explain this dependence, in terms of a large-scale magnetospheric asymmetry. In the current study, we present Cluster spacecraft observations from 12 October 2006 of earthward convective magnetotail plasma flows whose dusk-dawn sense disagrees with the untwisting hypothesis of IMF By control of the magnetotail flows. During this interval, observations of the upstream solar wind conditions from OMNI, and ionospheric convection data using SuperDARN, indicate a largescale magnetospheric morphology consistent with positive IMF B_y penetration into the magnetotail. Inspection of the in-situ Cluster magnetic field data reveals a flapping of the magnetotail current sheet; a phenomenon known to influence dusk-dawn flow. Results from the curlometer analysis technique suggest that the dusk-dawn sense of the $J \times B$ force was consistent with localised kinks in the magnetic field and the flapping associated with the transient perturbations to the dusk-dawn flow observed by the Cluster 1 spacecraft. We suggest that the IMF By penetration at the location of Cluster was unable to override the variable dusk-dawn flow associated with the flapping. We conclude that invocation of the untwisting hypothesis may be inappropriate when interpreting intervals of dynamic magnetotail behaviour such as during current sheet flapping, particularly at locations where

Previous observations have provided a clear indication that the dusk-dawn $(v_{\perp \nu})$ sense of

Deleted: Results from the curlometer analysis technique suggest that the dusk-dawn flow perturbations may have been driven by the $J \times B$ force associated with a dawnward-propagating flapping of the magnetotail current sheet, locally overriding the expected IMF B_y control of the flows.

Deleted:, particularly at location where magnetotail flaring becomes dominant.

1. Introduction

Convective magnetotail plasma flows at Earth, driven by the closing of magnetic flux via reconnection as part of the Dungey Cycle (Dungey, 1961) have been studied extensively for many years (e.g. Angelopoulos et al. 1992, 1994; Sergeev et al., 1996; Petrukovich et al., 2001; Cao et al., 2006; McPherron et al., 2011; Frühauff & Glassmeier, 2016). Arguably, the most well studied of these is the Bursty Bulk Flow (BBF). Angelopoulos et al. (1994) defined BBFs as being channels of earthward plasma flow continually above 100 km s⁻¹, exceeding 400 km s⁻¹ at one point across some interval, usually across a timescale of a few minutes. The flows are said to be the main transporter of mass, energy and flux in the magnetotail (e.g. Angelopoulos et al., 1994; Nakamura et al., 2002; Grocott et al., 2004a; Kiehas et al., 2018). Although their earthward nature is the key defining characteristic of BBFs, they will invariably exhibit a dusk-dawn component in their bulk flow as well (e.g. Angelopoulos et al., 1994; Petrukovich et al., 2001; Grocott et al., 2004b). Understanding the drivers of dusk-dawn asymmetries in magnetospheric dynamics is an important element of geospace research (e.g. Haaland et al., 2017).

Magnetotail flows are generally expected to be symmetric about midnight, at least in the absence of any asymmetry (e.g. Kissinger et al., 2012). A key factor that has been observed to influence the dusk-dawn direction of the magnetotail flow, however, is the B_y component of the Interplanetary Magnetic Field (IMF). It is well established that when the IMF reconnects with the dayside terrestrial magnetic field, a non-zero IMF B_y component leads to asymmetric loading of open flux into the polar cap (e.g. Khurana et al., 1996; Tenfjord et al., 2015; Grocott et al., 2017; Ohma et al., 2019). This results in a twisting of the magnetotail whereby the closed field lines are rotated about the midnight meridian, and a B_y component is superimposed onto the tail field as a consequence of IMF B_y penetration (Cowley, 1981; Petrukovich, 2011; Tenfjord et al., 2015). Subsequently, following nightside reconnection, the tail will untwist (Grocott et al., 2004c), with the excitation of multiple convective flow bursts, each with an earthward and dusk-dawn component, in the tail and nightside ionosphere (Grocott et al., 2007). In order to be consistent with the tail 'untwisting hypothesis', any convective flows associated with an individual tail field line

Deleted: 1

73 should share the same dusk-dawn direction (e.g. see Figure 3 of Grocott et al., 2005). The 74 role of IMF B_V in the untwisting hypothesis has been examined previously in a number of studies (e.g. Grocott et al, 2007; Pitkänen et al., 2013, 2015, 2017). These studies revealed 75 76 that under prolonged positive IMF B_{ν} conditions, the earthward flows are expected to 77 exhibit a dawnward component in the northern hemisphere ($B_x > 0$) and a duskward 78 component in the southern hemisphere ($B_x < 0$), with the opposite correlation for negative 79 IMF B_y conditions. This is especially true close to midnight, where the penetration of IMF B_y 80 is particularly noticeable. Further away from midnight, however, effects such as magnetotail 81 flaring (Fairfield, 1979) are expected to product a dominant By component, which may 82 suppress IMF By-effects on the dusk-dawn asymmetry, resulting in the symmetric earthward 83 convection of field lines (e.g. see Fig. 2 of Pitkänen et al., 2019). Nevertheless, IMF By has 84 been shown to govern the dusk-dawn nature of these flows both during periods of steadier, 85 slower convection (Pitkänen et al., 2019), as well as during more transient, dynamic BBF-like 86 intervals (Grocott et al., 2007) at up to 7 Re towards the dusk-dawn flanks (Pitkänen et al., 87 2013). In the present study, we present Cluster observations of dawnward and duskward 88 directed flows that do not match this expected dependence on IMF B_{ν} , implying that the 89 untwisting hypothesis is insufficient in this case. In particular, we highlight the problematic 90 nature of the observation of dawnward flow, in relation to the pre-midnight location of 91 <u>Cluster. We instead</u> suggest that the flows are being driven by local perturbations due to 92 dynamic behaviour of the tail that are associated with flapping of the current sheet. 93

Formatted: Font: Italic

Formatted: Font: Italic, Subscript

Deleted: ; Pitkänen et al., 2013

Deleted:

Deleted: |

Deleted: , we

The current sheet, or 'neutral' sheet, lies in the equatorial plane at the center of the tail plasma sheet and separates the earthward ($B_x > 0$) and tailward ($B_x < 0$) directed field (Ness, 1965). The current sheet is a highly dynamic region of the Earth's magnetotail which can undergo various types of net motion, such as tilting due to lobe magnetic pressures (Cowley et al., 1981; Tenfjord et al., 2017) as well as flapping. Flapping of the current sheet can generally be described as a sinusoidal-like variation in B_x of up to tens of nanoTesla, where an observing spacecraft often measures repeated changes in the sign of B_x (e.g. Runov et al., 2009), indicative of crossings of the current sheet, with characteristic times ranging from a few seconds to (more commonly) several minutes (e.g. Runov et al., 2009; Wu et al., 2016; Wei et al., 2019). Drivers of current sheet flapping have been widely investigated, with possible causes ranging from external solar wind/IMF changes (Runov et al., 2009),

94

95

96

97

98

99

100

101

102

103

104

induction of hemispheric plasma asymmetries (Malova et al., 2007; Wei et al., 2015), fast

earthward flow (Nakamura et al., 2009) as well as periodical, unsteady magnetotail reconnection (Wei et al., 2019). Studies such as Volwerk et al. (2008) and Kubyshkina et al. (2014) have illustrated that flapping of the current sheet can be associated with variable dusk-dawn flow, potentially overriding, or preventing any IMF B_y control of the flow.

In this paper we present Cluster spacecraft observations of an interval of dynamic magnetotail behaviour on 12 October 2006. Throughout this interval, Cluster 1 observed oscillations in the magnetic field B_x component, which we attribute to current sheet flapping, concurrent with a series of convective fast flows with significant and variable dusk-

flapping, concurrent with a series of convective fast flows with significant and variable duskdawn components. The B_y component of the concurrent upstream IMF had been largely

positive for several hours prior to the flapping. Consequently, the interval discussed here provides an opportunity to investigate the possible competition of two distinct mechanisms

for control of the dusk-dawn flow: 1) IMF B_{ν} and 2) localized dynamics related to the

flapping of the current sheet. In contrast to studies which have come before such as those $% \left\{ 1,2,\ldots ,n\right\}$

presented by Grocott et al. (2007) and Pitkänen et al. (2015), the observed dusk-dawn

direction of transient flow enhancements in this case disagrees with that which might be expected from the prevailing IMF B_{y} conditions, despite clear evidence for global

penetration of positive IMF B_y. We therefore suggest that IMF B_y penetration at the location

of Cluster was unable to overcome the variable dusk-dawn flow associated with the

129 flapping

2. Instrumentation and Data Sets

2.1. Spacecraft Data

The magnetospheric observations presented in this case study were made by the Cluster multi-spacecraft (C1-C4) constellation (Escoubet et al., 2001). We make use of the fluxgate magnetometer (FGM) onboard the Cluster spacecraft to obtain magnetic field measurements (Balogh et al., 2001), and obtain our bulk ion velocity data from the Hot Ion Analyser (HIA) on C1 and C3 calculated as on-board moments (Rème et al., 1997). The magnetic field data presented are 5 vectors-per-second (0.2s res) which have been 1s median-averaged, with the velocity data presented having spin resolution of just over 4s.

Where these datasets have been combined to produce parameters such as the plasma beta

Deleted: We therefore suggest that flapping of the current sheet had locally overridden the IMF B_y control of the dusk-dawn flow observed by Cluster 1.

and field-perpendicular velocities, we have resampled both the magnetic field and plasma data to 5s resolution. All data are presented in geocentric solar magnetospheric (GSM) coordinates unless stated otherwise.

146 147 148

149

150

151 152

153

154

155

156

157

158

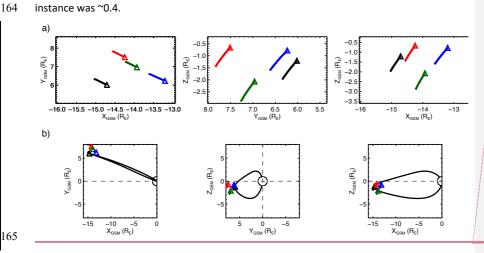
159

160

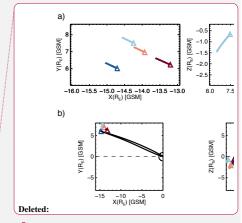
161

162

163


144

145


The interval of study in this paper occurred between 00:00 – 00:55 UT on 12 October 2006. At 00:00 UT the Cluster spacecraft were located in the near-Earth magnetotail plasma sheet, in the pre-midnight sector. C1 was located at (X = -14.7, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C2 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C3 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C3 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C3 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C3 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C3 at (X = -1.0, Y = 6.0, Z = -1.2) R_E, C3 at (X = -1.0, Y = 6.0, Z = -1.2)-14.2, Y = 7.5, Z = -0.7) R_E, C3 at (X = -13.9, Y = 7.0, Z = -2.1) R_E, and C4 at (X = -13.2, Y = 6.2, Z = -0.8) R_E. This is depicted in Fig. 1a by the colored triangles, along with the respective spacecraft trajectories, from 00:00 – 00:55 UT, by the solid lines. Fig. 1b shows a zoomedout version of Fig. 1a, which illustrates the location of the spacecraft with respect to the

Earth. Fig, 1b also shows a traced modelled magnetic field line, achieved using the semi-

empirical TA15 model of the magnetosphere (Tsyganenko & Andreeva, 2015), which passes through the location of C1 and connects to both the northern and southern hemispheres of the Earth. We parameterised the TA15 model using mean-averaged solar wind dynamic pressure (P_{dyn}) , IMF B_y and IMF B_z data from the 1-hour interval prior to 00:28 UT (the start of our specific interval of interest). These values were $P_{dyn} = 1.56$ nPa, IMF $B_v = +1.56$ nT and IMF $B_z = -2.17$ nT. There was also a tailward dipole tilt of $\approx -12^\circ$. The model was also parameterised with a solar wind coupling function index known as the 'N index', after Newell et al. (2007). The N index varies between 0 (quiet) and 2 (very active), and in this

Deleted: ure Deleted: ure Deleted: ure Deleted: ure

171	Figure 1: a) The locations of the Cluster spacecraft in the X-Y, Y-Z, and X-Z GSM planes, from
172	left to right, respectively, at 00:00 UT on 12 October 2006, marked by the triangles. The
173	trajectories from 00:00 UT to 00:55 UT are marked by the solid lines. The spacecraft are
174	color-coded according to the key on the right. b) As in a), with a zoomed-out view. The Earth
175	is shown by the solid circle. A TA15 model magnetic field line passing through the location of
176	C1 is shown as the solid black line.
177	
178	The IMF measurements used in this study were provided by the OMNIweb database at 1-
179	minute resolution, having been first propagated from L1 to the bow shock nose (King &
180	Papitashvili, 2005).
181	
182	2.2. SuperDARN Data
183	The ionospheric observations presented in section 3.3 were provided by the Super Dual
184	Auroral Radar Network (SuperDARN), an international collaboration of 36 ground-based
185	radars (Nishitani et al., 2019) that make line-of-sight Doppler measurements of the
186	horizontal motion of the ionospheric plasma every few seconds (e.g. Chisham et al., 2007).
187	Here, we use 2-min ionospheric convection maps created by fitting the line-of-sight E x B
188	velocity data to an eighth order expansion of the ionospheric electric potential in spherical
189	harmonics using the technique of Ruohoniemi & Baker (1998), implemented in the Radar
190	Software Toolkit (RST version 4.2, 2018). To accommodate intervals with limited data
191	availability, the data are supplemented with values derived from a statistical model
192	parameterized by IMF conditions. This is a well-established technique that has been
193	thoroughly discussed by, e.g., Chisham et al. (2007). The convection maps we present
194	employ the commonly used model of Ruohoniemi & Greenwald (1996). As a check on the
195	sensitivity of the maps to the choice of model input, we also tested the fitting using the
196	alternative model of Thomas and Shepherd (2018) and found that this has little impact on
197	the maps and no impact on our conclusions.
198	
199	As a further measure to ensure that the choice of model is not critical to our results, we
200	chose not to use the concurrent IMF vector to parameterise the background model. In this
201	case, because we are using the SuperDARN data to provide evidence in support of the
202	expected large-scale influence of IMF B _y , we deemed it inappropriate to include model data

already parametrised by IMF B_y . We instead specify a nominal southward IMF with zero B_y component in our analysis, to ensure that a background model with no pre-existing IMF B_y influence is used. Although this might result in the patterns we show being less accurate overall, especially in regions of poor data coverage, it will ensure that any B_y -associated asymmetry in the maps is driven by the radar data from our interval of study, and not the background model. This is discussed further in section 4.1, below.

208209210

203

204

205

206

207

3 Observations

211212

In this section we present observations of the IMF, magnetotail magnetic field and plasma flow, and ionospheric convection from an interval on 12 October 2006.

213214

216

217

218219

220

221

215 3.1 IMF Observations

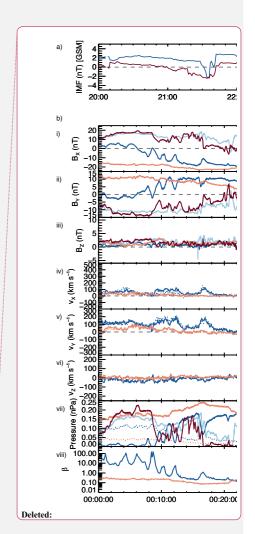
Figure 2 presents an overview of the spacecraft data from an extended interval around our period of specific interest for broader context. In Figure 2a, we show a time-series of the IMF B_y and IMF B_z data from 20:00 UT on 11 October to 01:00 UT on 12 October 2006. These data reveal that IMF B_y was generally positive for several hours prior to the fast flow interval, with IMF B_z predominantly negative. There were three small intervals of negative IMF B_y at ~ 21:35 UT, 23:00 UT and 23:40 UT and we discuss the possible ramifications of

222223

224 3.2 Cluster Spacecraft Observations


225 In Figure 2b, we present the in-situ magnetic field and plasma measurements from the

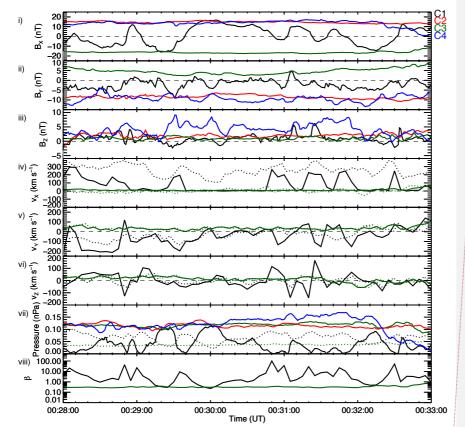
 $\,226\,$ Cluster spacecraft across the interval 00:00 – 00:55 UT.


these, and our treatment of them, in section 4.1.

227

Deleted: ¶ ¶ ¶

Figure 2: a) A plot of the IMF time series data for the IMF B_y (blue) and IMF B_z (red) components, from 20:00 UT on 11 October 2006 to 01:00 UT on 12 October 2006. The vertical dashed lines indicate the start (00:00 UT) and end (00:55 UT) of the interval of Cluster data (below). b) The in-situ Cluster spacecraft measurements. Shown first is the local magnetic field data, i) B_x , ii) B_y and iii) B_z , followed by the bulk ion velocity data, iv) v_x , v) v_y , and vi) v_z (dotted lines). The field-perpendicular component of the ion flow (indicative of the **E x B** convection) is shown in panels iv) to vi) by the solid lines. In panel vii) the magnetic



241	${B^2 \choose 2\mu_0}$ and thermal ion (nkT) pressures are shown by the solid and dotted lines respectively,		
242	and in panel viii) the ion plasma beta from C1 and C3 is shown. All data are labelled		
243	according to the color-coded key on the right-hand side. The time-interval between the gray		
244	shaded region marks our specific interval of interest (discussed in text).		
245			
246			
247	At $^{\sim}00:06$ UT, C1 crossed from the northern hemisphere into the southern hemisphere,		
248	illustrated by the sign change in B_x from positive to negative shown in Fig. 2b i). Coincident		Deleted: ure
249	with this, the observed B_y , shown in Fig. 2b ii) turned from negative to positive, consistent		Deleted: ure
250	with the expected B_{ν} due to magnetotail flaring (see section 4.2) at this pre-midnight		
251	location (Fairfield, 1979). Fig 2b iv) reveals that up until ~00:24 UT, the bulk earthward flow		Deleted: ure
252	(v_x , dotted lines) and field-perpendicular flow ($v_{\perp x}$, solid lines) measured by both C1 and C3		
253	was generally low in magnitude (< 100 km s ⁻¹). The dusk-dawn (v_y) component of the flow,		Deleted: (v_x)
254	shown in Fig. 2b v), remained steadily duskward $(v_y > 0)$ at C1 and duskward or close to zero		Deleted: gure
255	at C3_The <u>north-south</u> (v_z) component of the flow in Fig. 2b vi), measured by C1 and C3 was	***************************************	Deleted: d $(v_y > 0)$ at
256	effectively zero. During this period, the Cluster spacecraft that resided in the northern		Deleted: . Deleted: ure
257	hemisphere (predominantly C2 and C4), observed $B_y \le 0$, and the spacecraft which resided		Formatted: Font: Not Italic
258	in the southern hemisphere (predominantly C1 and C3) observed $B_{y} > 0$, again consistent		Formatted: Font: Not Italic
259	with magnetotail flaring. Occasionally a spacecraft encountered the current sheet ($B_x = 0$) at		Deleted: .
260	which point it observed $B_y = 0$. We comment on the significance of these magnetic field		
261	observations in section 4.2.		
262			
263	After ~00:24 UT, C1 began to observe a period of enhanced earthward flow		
264	(v_x > 300 km s ⁻¹) and variable dusk-dawn flow, concurrent with sudden variation in the local		
265	B_x component. Similarly, C2 and C4, but not C3, observed large magnitude (> 20 nT) rapid		
266	variations in B_x , which appear to have an apparent timescale of around a minute and which		
267	we attribute to a flapping of the current sheet. As well as rapid variations in B_x , both the B_y		
268	and B_z components of C1, C2 and C4 seemed highly variable. As perhaps to be expected,		
269	these variations in the magnetic field were accompanied by significant variations in the		
270	magnetic pressure of ~0.15 nPa, as shown by the solid lines in Fig, 2b vii).		Deleted: ure
I			

 Unlike the other spacecraft, C3 remained in the southern hemisphere throughout the entire interval and did not observe the rapid fluctuations in B_x . Between 00:28 – 00:33 UT (the gray shaded region), C1 began to repeatedly and rapidly cross the current sheet, as previously experienced by C2 and C4, whilst continually observing enhanced earthward flow and variable dusk-dawn convective flow ($v_{\perp y}$). Across the entire interval, the plasma beta, β , indicated in Fig. 2b viii), measured by C3 remained above ~0.1, with C1's measured β ranging from 0.1 to over 100. This is consistent with the fact that C1 was continually crossing the current sheet at the center of the plasma sheet, where β is larger (Baumjohann et al., 1989). It is this interval of current sheet crossing and variable flow observed by C1 that we focus on below and is presented in more detail in Figure 3.

Deleted: ¶

Deleted: ure

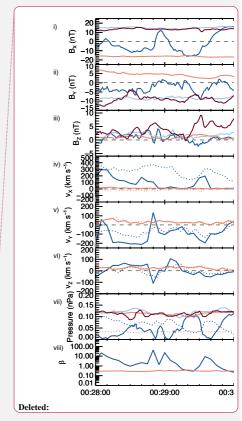


Figure 3: As in Fig., 2b, but for the interval 00:28 – 00:33 UT on 12 October 2006.

Deleted: ure

although this flow barely reached 100 km s⁻¹. The <u>negative</u> enhancements in $v_{\perp y}$ were

327

297 298 Fig. 3 i) conveys the extent of the large-amplitude B_x variations observed by C1 between Deleted: ure 299 00:28 and 00:33 UT. B_x was generally fluctuating between positive and negative values 300 throughout the five-minute interval, with a minimum at ~ -16 nT and maximum at ~17 nT. 301 The magnetic pressure at C1 shown by the solid black line in Fig. 3 vii) is consistent with the Deleted: ue Deleted: ure 302 idea that C1 was crossing the current sheet, as this generally reached minima at the center of each current sheet crossing $(B_x \approx 0)$. The B_y component (Fig. 3ii) measured by C1 generally 303 304 remained negative and highly variable for the entire interval, with a number of large 305 negative enhancements and a few small positive excursions. It is particularly of note that 306 when C1 was below the neutral sheet, as implied by a negative B_x component, B_y was 307 almost always negative. As we discuss in section 4.2, this is inconsistent with what we would 308 expect based on the location of the spacecraft and also inconsistent with any expectation 309 that a positive IMF B_v should have penetrated into the tail. The B_z component (Fig. 3iii) 310 generally remained positive with some small negative excursions. 311 312 Unlike C1, C2-4 measured generally steady Bx throughout this five-minute period. C2 and C4 313 measured positive B_x , indicating that they were above the neutral sheet, and C3 measured 314 negative B_x , indicating that it was below the neutral sheet. Similarly, B_y was steadily negative 315 for C2 and C4 and steadily positive for C3. Again, we note the inconsistency between the C1 and C3 observations of B_y ; when in the southern hemisphere C1 generally observed $B_y < 0$, 316 317 whereas C3 observed $B_v > 0$. On a few separate occasions C1 did briefly observe $B_v > 0$ (e.g. 318 at 00:31:05 UT) but at these times C1 was located above the neutral sheet ($B_x > 0$), while C2 319 and C4 observed $B_y < 0$ above the neutral sheet. These variations in B_y imply the observation 320 of a 'kink' in the field at the location of C1, the ramifications of which are discussed further 321 in section 4.2. 322 323 At times when B_x observed by C1 was negative, indicating that C1 was below the neutral 324 sheet, C1 generally observed negative (dawnward) $v_{\perp \nu}$ (Fig. 3v) with a magnitude varying 325 between 100 and 200 km s⁻¹. At times when B_x became positive, indicating that C1 was 326 above the neutral sheet, C1 observed positive (duskward) $v_{\perp \nu}$ a majority of the time,

Deleted: C1 tended to observe positive (duskward) $v_{\perp y}$,

Deleted: (both positive and negative)

generally accompanied by negative enhancements in B_y . Across the interval, there was a near continual $v_x > 200 \text{ km s}^{-1}$ flow (black dotted line in Fig. 3iv), peaking at almost 400 km ${
m s}^{-1}$, with concurrent peaks in the convective $v_{\perp x}$ component (solid black line) of at least 200 km s⁻¹. The convective flow measured by C3, however, was generally very weak ($|v_{\perp}|$ < 50 km s⁻¹) throughout this period (solid green line in Fig 3iv). v_z (Fig. 3vi), as measured by both C1 and C3 remained low in magnitude (< 100 km $\mbox{s}^{-1}\mbox{)}$ for the duration of the interval, with a few $v_{\perp z}$ excursions above 100 km s⁻¹ observed by C1. The most significant enhancements in $v_{\perp z}$ seen by C1 appeared to occur in conjunction with the rapid current sheet crossings between 00:30:50 and 00:32:00 UT. We discuss the implications of these observations in the context of the upstream IMF conditions and large-scale magnetospheric morphology in section 4.

343

345

3.3 Ionospheric Convection Observations

346 347 348

349

350

351

333

334

335

336

337

338 339

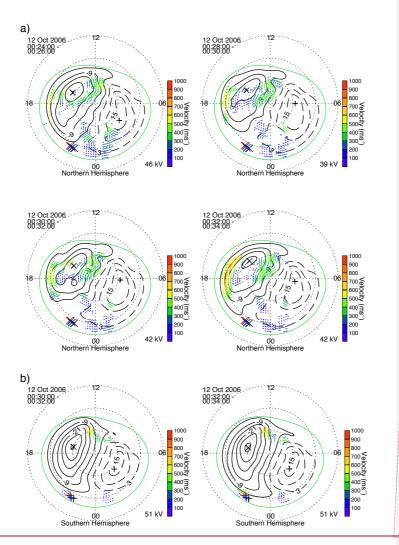
340

341 342

344

To provide the large-scale context in which we can interpret the more localized observations from the Cluster spacecraft we show ionospheric convection observations in Figure 4. In Fig. 4a we present a series of four 2-minute integration SuperDARN maps of the northern hemisphere ionospheric convection pattern, beginning at 00:24 UT, and ending at

352 00:34 UT, which encompasses our specific interval. In all maps, plasma is flowing anti-353 sunward across the polar cap at high latitudes, also with a strong duskward sense, with the 354 direction of the convection reversing in the pre-midnight sector before returning sunward at


lower latitudes. 355

Deleted: ue

Deleted: ue

Deleted: orange

Deleted: ure

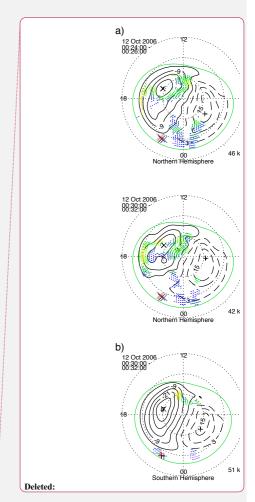


Figure 4: Maps of the ionospheric plasma convection derived from SuperDARN observations. Midnight is to the bottom of each map, noon to the top, dusk to the left and dawn to the right. The dashed black circles are spaced every 10° in magnetic latitude. The thicker solid and dashed black lines represent the plasma streamlines and are the contours of the electrostatic potential. Flow vectors are plotted at the locations of radar observations and these are color-coded based on the magnitude of their velocity. a) Four 2-minute

northern hemisphere maps from 00:24-00:26, 00:28-00:30, 00:30-00:32 and 00:32-00:30

Formatted: Font: +Body (Calibri)

Formatted: Font: +Body (Calibri)

Formatted: Font: +Body (Calibri)

Formatted: Font: +Body (Calibri)

369	00:34 UT, respectively. b) Two 2-minute southern hemisphere maps from 00:30 – 00:32 and	
370	00:32 – 00:34 UT, respectively. On each northern (southern) hemisphere map, the	
371	footpoints of the Cluster spacecraft constellation are shown by the X's (+'s), mapped using	
372	the TA15 model.	
373		
374		
375	Owing to the coupled nature of the magnetosphere-ionosphere system, the observed	
376	ionospheric convection pattern is indicative of the global-scale magnetospheric convection	
377	(Cowley, 1981). In this case, the typical symmetrical twin-cell convection pattern has been	
378	rotated clockwise, with the dawn cell extending across into the pre-midnight sector,	
379	indicative of convection that has been driven under the influence of a positive IMF B_y	
380	component (e.g. Reistad et al., 2016, 2018). On each northern hemisphere map, the	
381	footpoints of the Cluster spacecraft constellation are indicated by the crosses (X), mapped	
382	using the TA15 model with the same parameterisation described in section 2.	
383		
384	4b shows two 2-minute integration SuperDARN maps of the southern hemisphere	Deleted: ure
385	ionospheric convection pattern, beginning at 00:30 UT, and ending at 00:34 UT. The	
386	associated footpoints of the Cluster spacecraft are indicated by the plus signs (+). Although	
387	the coverage of radar data is much less than in the northern hemisphere, there are data in	
388	the pre- and post-midnight sectors which appears to be influencing the location of the flow	
389	reversal region at the nightside end of the dusk cell. Opposite to the northern hemisphere	
390	case, it is the dusk cell in the south which is extending towards, or just beyond, the midnight	
391	meridian. This is also consistent with a large-scale positive IMF B_y influence, owing to the	
392	expected north-south asymmetry of the influence of IMF B_y in the magnetosphere (e.g.	
393	Pettigrew et al., 2010). The significance of these observations is further discussed in section	
394	4.1.	
395		
396	4. Analysis and Discussion	
397		

We have presented observations of a dynamic interval of plasma flows and magnetic field in

the Earth's magnetotail. In this section we discuss our rationale for interpreting the flows as

398399

manuscript submitted to Annales Geophysicae 401 being inconsistent with large-scale magnetotail untwisting and our interpretation of their 402 relationship to current sheet flapping. 403 404 4.1 Evidence for an inconsistency with large-scale magnetotail untwisting 405 During the five-minute interval studied (00:28 – 00:33 UT) C1 measured a continually fluctuating B_x component (Fig. 3i), indicative of multiple crossings of the tail current sheet. 406 407 C1 was the only spacecraft to measure this signature across the interval (although similar 408 signatures had been observed a few minutes earlier by C2 and C4). C1 also measured a 409 series of earthward convective magnetotail fast flows with varying dusk-dawn components. 410 The data in Fig. 3 i) and Fig. 3 v) illustrate that when B_x was positive (negative), a duskward Deleted: ure Deleted: ure 411 (dawnward) $v_{\perp \nu}$ was generally observed. Additionally, the data in Fig. 3 ii) show that C1 Deleted: ure tended to observe a negative B_y component. According to the magnetotail untwisting 412 413 hypothesis (e.g. Pitkänen et al., 2015), these flow and magnetic field observations are 414 consistent with a negative IMF B_{ν} penetration. The IMF data presented in Fig. 2a, on the Deleted: ure 415 other hand, revealed that IMF B_y was generally positive for several hours prior to the fast 416 flow interval (00:28 – 00:33 UT). Based on the IMF data alone, therefore, one might expect Deleted: 417 that a positive IMF B_V will have penetrated into the magnetosphere and thus ought to have determined the "expected" dusk-dawn direction of the flow. In that case, the flows 418 419 observed here would have a dusk-dawn sense that is not explained by current theoretical 420 models of magnetotail untwisting, meaning they are not IMF By-controlled (e.g. Grocott et 421 al., 2007). There are a number of possible explanations for this discrepancy and we address Deleted: 422 each one in turn. 423 424 The first possibility is that our conclusion regarding the expected sense of IMF By-control is Deleted: what is Deleted: dusk-dawn asymmetry 425 incorrect. As discussed above, the flows observed by Cluster would be consistent with the 426 magnetotail untwisting hypothesis in the case that we had IMF B_{ν} < 0 penetration. We Formatted: Font: Italic Formatted: Font: Italic, Subscript 427 noted in section 3.1 that there were three small negative IMF B_v excursions prior to our 428 Cluster observations interval. Although the propagation of the IMF to the bow shock is 429 accounted for in the OMNI data, there is uncertainty regarding the time it takes for the IMF B_{ν} to 'propagate' into the magnetotail. Uncertainties in IMF B_{ν} propagation times (e.g. Case 430 & Wild, 2012) have previously been cited as an explanation for observing an unexpected 431 432 asymmetry (e.g. Pitkänen et al., 2013). Studies such as Tenfjord et al. (2015, 2017) and Case

et al. (2018), for example, have suggested a reconfiguration time (to the prevailing IMF B_y conditions) for nightside closed field lines of around 40 minutes. At ~00:28 UT (the beginning of our specific interval of interest), the IMF B_y had been positive for around 50 minutes. Based on the Tenfjord timescale, this would thus imply that our interval was wholly IMF B_y > 0 driven. Other studies, on the other hand, such as Browett et al. (2017), have shown that longer timescales of a few hours may be important.

446447448

449

450

451

452

441

442

443

444

445

However, for such long timescales to play a role one would expect to have observed a relatively persistent IMF B_y component during that time. The integrated IMF B_y over the hours prior to our interval was certainly convincingly B_y -positive, and it seems highly unlikely that a few minute-long fluctuations into the opposite IMF B_y polarity, 1 or 2 hours prior to the flows we observed, could have a significant influence. We can thus be confident that positive IMF B_y was governing the global magnetospheric dynamics in this case.

453 454 455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

Despite this convincing argument that the IMF data alone imply a positive IMF B_{ν} penetration, we performed an additional analysis to further ensure that these negative excursions did not lead to a change in the global nature of the magnetosphere-ionosphere system. We inspected the concurrent northern hemisphere SuperDARN data (presented in Fig. 4a) to provide evidence of the large-scale convection pattern. If the large-scale flow is consistent with a positive IMF B_y component, then the magnetotail flows that we observed must be deviating from this for some reason and cannot be related to IMF B_{ν} -control. The SuperDARN data indeed confirm that the large-scale morphology of the system was consistent with a positive IMF B_y component (e.g. Lockwood 1993; Grocott et al., 2017; Reistad et al., 2018). This can be inferred from the general shape of the convection pattern, whereby across multiple maps (00:24 – 00:34 UT) the pattern was rotated clockwise, with the dawn cell having extended into the pre-midnight sector. That this is the expected convection pattern for an IMF B_y -driven magnetosphere is also supported by the concurrent low level of geomagnetic activity. The auroral AU and AL indices (not shown) confirm that this interval is geomagnetically quiet (AU and |AL| both less than (or of the order of) 10 nT), such that the nightside ionospheric convection asymmetry should be driven by IMF B_y rather than conductivity-driven features such as the Harang <u>reversal</u> which might otherwise

Deleted: ure

Formatted: Font: Italic

Formatted: Font: Italic, Subscript

Deleted: discontinuity

complicate the auroral zone flows (e.g. Grocott et al., 2007; Grocott et al., 2008; Reistad et al., 2018).

The validity of the convection observations is further supported by the coverage of nightside data which were used to constrain the model convection pattern. The data used to create a SuperDARN convection map are supplemented by data from a statistical model (in this case Ruohoniemi & Greenwald, 1996) which is typically parameterised by the instantaneous IMF conditions. In the case that there is a lack of real data coverage, a created SuperDARN map will be strongly influenced by the model data, as opposed to real data, and thus would reflect a prediction of convection based on the IMF conditions. The maps shown in Fig. 4a illustrate that there were dozens of SuperDARN vectors in the midnight sector which were fitted to create the global convection maps. To confirm that these data were sufficient, and that the observed large-scale convection pattern was not being driven by model data, we parameterised the model in our analysis with IMF $B_y = 0$. Despite this, a clear IMF B_y -asymmetry exists, thus demonstrating that the observed large-scale IMF $B_y > 0$ global convection patterns must be data-driven.

A second possible explanation for the discrepancy between the dusk-dawn direction of the local and global-scale convection concerns the certainty with which we can determine the location of the spacecraft with respect to the large-scale convection pattern. The untwisting hypothesis, as considered by e.g. Pitkänen et al. (2013, 2017), relies on the assumption that the convection cell to which the spacecraft is connected should be a factor of only hemisphere and the sense of IMF B_{ik} . In other words, as discussed above, for IMF $B_{y} > 0$, the hypothesis dictates that C1 ought to be located on the dawn cell when above the neutral sheet and the dusk cell when below, at least in the case that the spacecraft is close to midnight (Grocott et al., 2007). This might be true statistically, but does not account for the dusk-dawn Jocation of the spacecraft, which in this case was $6 \lesssim Y \lesssim 7$ R_E. If, as a result, the spacecraft was actually located on the dusk cell when above the neutral sheet, and on the dawn cell when below the neutral sheet, then the sense of the observed plasma sheet flows would actually be consistent with the large-scale convection.

Deleted: ure

Moved (insertion) [1]

Deleted: (

Deleted: ,

Deleted: ,

Deleted:)

Moved up [1]: (e.g. Pitkänen et al., 2013, 2017)

Deleted: it is not clear how valid an assumption it might be when trying to interpret observations from a single event in the presence of a highly dynamic neutral sheet. It also fails to

Deleted:

515 One way to specify which cell the spacecraft is located within is to map its location into the 516 ionosphere. This has been done using TA15 and is shown by the crosses (X) on the northern 517 hemisphere convection maps and by plus signs (+) on the southern hemisphere convection 518 maps, in Fig. 4a and 4b, respectively. Consider first the northern hemisphere map from Deleted: ures 519 00:30 – 00:32 UT in Fig. 4a: the spacecraft appear to map closer to the dawn cell than the Deleted: ure dusk cell, such that the predominantly duskward flow that C1 observed in the northern 520 521 hemisphere plasma sheet would seem to be inconsistent. However, it is worth considering Deleted: there 522 that the pre-midnight location of the spacecraft, the proximity of the mapped footpoints to 523 the dusk cell, and the level of uncertainty generally accepted to be present in field line 524 mapping, may give credence to the possibility that the spacecraft actually mapped to the 525 dusk cell in the northern hemisphere. If this was the case, then the northern hemisphere 526 flows observed by C1 would actually be consistent with the large-scale convection pattern. 527 However, if we consider the southern hemisphere maps in Fig. 4b we can be more certain of Deleted: ure 528 which cell the spacecraft map to. Owing to the IMF B_y positive nature of the convection (i.e. 529 the more extended southern hemisphere dusk cell) and the pre-midnight location of the 530 spacecraft, the footpoints are located quite convincingly on the dusk cell. This is despite the 531 dusk-dawn asymmetry being less pronounced than that seen in the northern hemisphere 532 (and the associated poorer coverage of southern hemisphere SuperDARN data). When 533 below the neutral sheet C1 observed dawnward flows, meaning it would have to have been 534 on the southern hemisphere dawn cell to be consistent with the large-scale convection, which is clearly not the case. Indeed, the observed dawnward flow in the southern 535 536 hemisphere at this location could only be interpreted in terms of the untwisting hypothesis 537 for a situation where we had clear IMF $B_v < 0$ penetration (and associated extended dawn 538 cell), which has already been ruled out. C3, meanwhile, continually observed duskward flow, 539 which appears to be consistent with the larger-scale convection. Jt seems much more likely, Deleted: 540 therefore, that C1 observed flow that was associated with localized magnetic field dynamics 541 rather than being a signature of the large-scale convection. 542

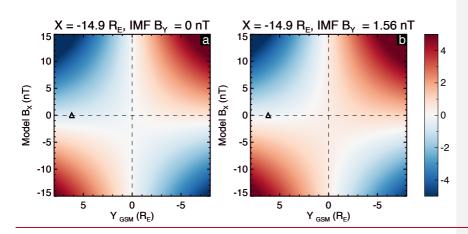
543

544

545

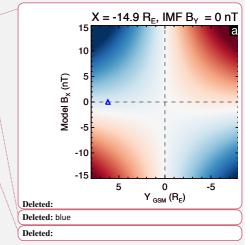
546

4.2 Evidence for a local perturbation in the magnetotail


The lack of consistency with the large-scale convection leads us to a third explanation for our observations, which is that there is a local perturbation within the tail that is

of these phenomena on the presence of B_{ν} in the tail at the specific location of each

576577


spacecraft.

552 independent of any large-scale, IMF B_y -controlled asymmetry associated with magnetotail 553 untwisting. This is supported by the observations from the other Cluster spacecraft. The 554 low-level of flow seen by C3 is mostly duskward (Fig. 3v) and therefore consistent with the 555 idea of untwisting under IMF $B_v > 0$, given its southern hemisphere location; although, it Deleted: 556 should be noted that this observation would also be consistent with the expected duskward 557 flow in a pre-midnight location even in the absence of a large-scale asymmetry (e.g. 558 <u>Kissinger et al., 2012).</u> Further, in Fig. 2b v), up until the rapid B_x variations began at ~00:24 Deleted: ure 559 UT, fast duskward flow in the southern hemisphere was also seen by C1. The fact that C3 560 continued to then observe steady duskward flow, and no significant B_x change, suggests 561 that the change in the nature of the C1 observations after 00:24 UT must in-fact be due to 562 some localized process that was responsible for driving the dawnward component of the 563 flows which was only observed by C1. 564 565 This idea of a local perturbation is also supported by the variations in the local B_{ν} 566 component. Fig. 3 ii) illustrates the in-situ variations in B_y with time across the interval. Deleted: ure 567 Despite there clearly being positive IMF B_y penetration globally (as confirmed by inspection 568 of the OMNI and SuperDARN data), C1, C2 and C4 all recorded mostly negative local By 569 values. In the studies of, e.g., Pitkänen et al. (2013, 2017) this observation would have been 570 offered as evidence of a negative of IMF B_y penetration, thus supporting the untwisting 571 hypothesis. However, it is important to note that a negative local B_y component may be 572 wholly consistent with positive IMF B_{ν} . There are, in fact, multiple sources of B_{ν} in the tail, 573 such as magnetotail flaring (Fairfield, 1979), as well as tilt effects and current sheet warping (see e.g. Petrukovich et al., 2005), in addition to a penetration of the IMF B_y . To fully 574 575 interpret the magnetic field observations, we must therefore consider the possible effects

Figure 5: TA15 model magnetic field data. In each case, plotted is Y vs B_x [GSM], (at X=-14.9 R_E, i.e. the X position of C1 at ~00:28 UT on 12 Oct 2006), with the TA15 modelled B_y value shown by the color bar on the right. The <u>black</u> triangle shows the Y-location of C1, at $B_x = 0$. In panel (a) we have imposed IMF $B_y = 0$, and for panel (b) we have used the 1-hour mean-averaged IMF B_y (+1.56 nT) in the hour prior to 00:28 UT.

To aid in this interpretation, we present TA15 model magnetic field data in Figure 5, to provide an indication of the expected background B_y -component at the time of our interval. These data, from $X = -14.9 R_E$, are plotted against Y [GSM]-position on the horizontal axis, and against the B_x -component on the vertical axis. We have reversed the conventional direction of the horizontal axis (negative to positive from left to right) to be consistent with a view looking earthward from downtail. In panel (a) we show the field for the case that IMF $B_y = 0$ and in panel (b) the case that IMF $B_y = +1.56 nT$ (the 1-hour mean-averaged IMF B_y in the hour prior to 00:28 UT). The first conclusion we can make from consideration of the B_y component in Fig., 5a is how, even under no IMF B_y penetration, a 'background' B_y value will exist in the tail purely dependent on location. In such a 'symmetric' tail, one would expect the background B_y value to appear as one moves away from midnight toward the dusk-dawn flanks, as well as further above and below the neutral sheet. Pre-midnight, we would expect to observe negative B_y above the neutral sheet ($B_x > 0$), and positive B_y below the

Deleted: ure

	4		a 1 .
manuscrint	suhmitted	to Annales	Geophysicae

606	neutral sheet (B_x < 0), with the opposite effect post-midnight. This is the <u>well</u> known	
607	magnetotail flaring <u>effect</u> (Fairfield, 1979).	Deleted: effect
608		
609	The data in Fig, 5a also show the effect of the negative (tailward) dipole tilt (as appropriate	Deleted: ure
610	to our study interval) and current sheet warping on the local B_y component. According to	
611	Petrukovich (2011), the current sheet warping (controlled by the dipole tilt) is expected to	
612	add a negative B_y component pre-midnight and a positive B_y component post-midnight.	
613	Furthermore, the 'even tilt' effect is expected to add a negative B_y component to both the	
614	pre and post-midnight sectors for a negative tilt. This leads to the effect seen in Fig., 5a	Deleted: ure
615	where in the pre-midnight sector, the location of the B_y polarity change occurs in the	
616	southern hemisphere (at $B_x \approx -3$ nT).	
617		
618	Fig., 5b illustrates the scenario relevant to our case study, where we have additionally a	Deleted: ure
619	global positive IMF B_y penetration. This additional positive B_y has the effect of moving the	
620	location of the pre-midnight B_y polarity change back up towards the neutral sheet. This	
621	explains why the Cluster spacecraft observed $B_y \approx 0$ at times of $B_x \approx 0$ during the few tens of	Deleted: when
622	minutes prior to our interval, as noted in section 3.2. This also explains why C2-3 and C4	Deleted: at times of
623	observed the polarity of B_y that they did throughout the interval. It is thus clear that positive	
624	IMF B_y penetration does not mean we should expect to observe positive B_y everywhere in	
625	the tail, rather, it simply means that there is expected to be some positive B_y perturbation	
626	to the already present 'background' B_y at a particular location. As Fig _{**} 5b demonstrates, C2	Deleted: ure
627	and C4 (located above the neutral sheet) are expected to have observed negative B_y even	
628	though positive IMF B_y has penetrated into the magnetotail, illustrating that the flaring	
629	effect is generally dominant at the spacecraft location, The background B_y expected at their	Deleted: .
630	location (pre-midnight, $B_x > 0$), is negative and the IMF B_y -associated perturbation was not	
631	large enough to enforce a sign change in B_y .	
632		
633	The Cluster spacecraft in our study were all located pre-midnight (+Y GSM). From Figure 3,	
634	C2 and C4 observed positive B_x , and negative B_y , and at ~00:28 UT were located at around	
635	$Z = -1$ R _E (Figure 1). C3, however, observed negative B_x and positive B_y , and was located at	
636	around Z = -2.5 R _E . The location of the neutral sheet at \sim 00:28 UT can therefore be said	Deleted: crossing
637	(locally) to have been somewhere between -1 and -2.5 R _E in Z. C1 was located at around Z =	

 $-1.5~R_E$ and, throughout the five-minute interval, observed a B_x which continually fluctuated from positive to negative, yet observed mostly weakly negative B_y . For B_y to have remained negative, despite C1 moving above and below the neutral sheet, suggests that there was a B_y negative 'kink' in the magnetotail that was localized to the vicinity of C1. This is further supported by the fact that numerous (albeit brief) positive B_y excursions occurred when C1 was above the neutral sheet (as noted in section 3.2). We use the term 'kink' to highlight a deformation in the nearby field lines which results in the observed perturbations to the local B_y component. We suggest that this deformation could be relatively small in terms of field line length, much like a kink in a cable or wire. In the following section, we investigate this kink in relation to the observed current sheet flapping.

4.3 Evidence for current sheet flapping as a source of the asymmetric flows

If a localized magnetic field perturbation was associated with the lack of observation of the expected dusk-dawn flow for magnetotail untwisting, investigating its cause seems a worthwhile endeavour. The clear sinusoidal-like variation in B_x observed by C1, which is evidence of current sheet flapping (e.g. Runov et al., 2009), provides us with a starting point for this investigation. This flapping must be highly localized as at the time of our five-minute flow interval (00:28 -00:33 UT), only C1 observed the flapping. MVA analysis (Sonnerup & Cahill, 1967) suggests that the flapping was a kink-like wave which was propagating dawnward (Rong et al., 2015; Wu et al., 2016), and therefore may have been a source of the

observed dusk-dawn flow.

The causes of current sheet flapping have been discussed previously (Runov et al., 2009; Wei et al., 2019). One such cause has been attributed to localized, periodical reconnection – a process known to drive Bursty Bulk Flows (BBFs) in the magnetotail (Angelopoulos et al., 1994; Zhang et al., 2016). In fact, BBFs excited directly as a result of reconnection in the tail have been previously linked to magnetic fluctuations in the current sheet (Nakamura et al., 2009; Wu et al., 2016). Examining the data presented in Fig. 3 iii) and Fig. 3 iv), we note that

675 20 676 C1

C1 measured a generally positive B_z , with a few negative blips, as well as continually fast (v_x

677 > 2

> 200 km s⁻¹) earthward flow, peaking at over 370 km s⁻¹ with bursts of enhanced

678 c

convective flow ($v_{\perp x} > 200 \text{ km s}^{-1}$) also apparent. These observations are fairly consistent

Deleted: ure

Deleted: Figure

with (if slightly slower than) the original definition of a BBF (Angelopoulos et al., 1994). This, along with the absence of similar flow observations in the C3 data, suggests that C1 may have been located earthward of a localized reconnection site (owing to $B_z > 0$), where persistent, localized reconnection was exciting fast earthward flow. The reconnection process may then have been driving the current sheet flapping, inducing the localized kink in the field, and ultimately controlling the dusk-dawn direction of the convective flow.

It is well known that the magnetic tension force is responsible for the acceleration of plasma following reconnection (Karlsson et al., 2015). Our observations of a dusk-dawn flow component may be related to the localized magnetic tension forces driving and directing plasma flows in association with the flapping. In order to provide some scope to this suggestion, we attempted to find the direction of the $J \times B$ forces acting on the plasma. We used the curlometer technique (Dunlop et al., 1988, 2002), to estimate the average current density, J, flowing through the volume bound by the spacecraft tetrahedron. The $J \times B$ force density [N m⁻³] is then calculated, firstly, by taking the cross product of J with the average magnetic field vector B from the four-spacecraft (B_{AVG}) , We also calculate $J \times B$

using solely B from C1 (B_{C1}), in order to provide a more local estimate for $J \times B$ at the

location of C1.

In order to check the validity of using the curlometer approach, we calculated the quality parameter, Q, defined as $|\nabla \cdot \boldsymbol{B}|/|\nabla \times \boldsymbol{B}|$. It is generally accepted that a value of Q < 0.5 is required for a current estimate to be valid. Hence, the value of Q, along with due consideration of the spacecraft configuration and its orientation relative to the magnetic field structure, may be used as a monitor of how reliable the curlometer approach is (Dunlop et al., 2002). This is discussed further below, in reference to the analysis shown in Figure 6.

Deleted:

Deleted: (Karlsson et al., 2015)

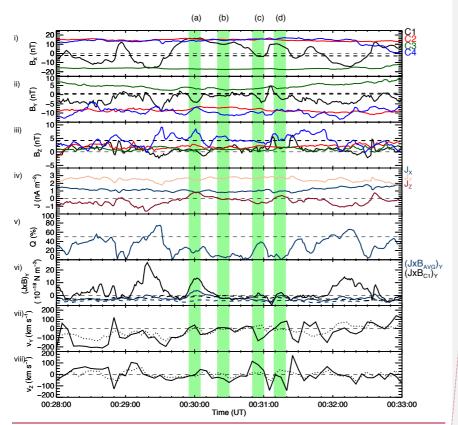
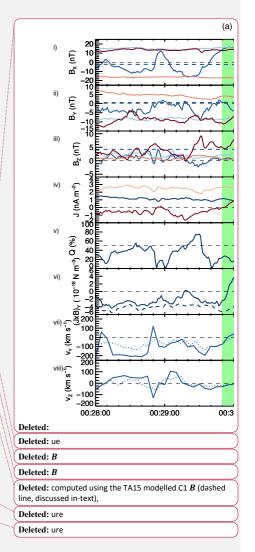



Figure 6: i-iii) The local magnetic field vector \boldsymbol{B} (B_x , B_y , B_z) observed by C1-4, as shown previously (solid lines) and the TA15 modelled \boldsymbol{B} vector for C1 (dashed black_lines). iv) The components of the current density vector \boldsymbol{J} (J_x , J_y , J_z), v) Q, vi) ($\boldsymbol{J} \times \boldsymbol{B}_{AVG}$)_{\boldsymbol{J}_y} (solid blue line) and ($\boldsymbol{J} \times \boldsymbol{B}_{C1}$)_{\boldsymbol{J}_y} (solid black line). The dashed blue and black lines indicate the equivalent calculation where the TA15 model \boldsymbol{B} field of C1 has been used (see text). vii) v_y ($v_{\perp y}$ in solid lines), observed by C1 and viii) v_z ($v_{\perp z}$ in solid lines), also observed by C1. The green highlighted regions labelled (a), (b), (c) and (d) correspond to four specific time-windows of interest (discussed in-text).

Shown in Fig., 6 i-iii) are the local magnetic field B_x , B_y and B_z components, as presented previously. In Fig., 6 iv) are the current density J_x , J_y and J_z components determined from the

730	curlometer analysis. In Fig. 6 vi) is the dusk-dawn component of $J \times B_{AVG}$ and $J \times B_{CI}$		Deleted: ure
731	Finally, in Fig. 6 vii) and viii) are the dusk-dawn and north-south components of the flow		Deleted: B
		1	Deleted: .
732	(and field-perpendicular flow) observed by C1, as shown previously. In panels (i-iii), the		Formatted: Font: Not Bold
733	dashed black line, represents the TA15 modelled magnetic field (see section 4.2) at the		Deleted: In panels i-iii) and vi), also shown is a dashed blue line
734	location of C1. In panel (vi) the dashed blue and black lines represent the $(J_{\sim} B_{AVG})_{v}$ and $(J_{\sim} B_{AVG})_{v}$	-	Deleted: this
735	$\times B_{C1}$) _v forces, respectively, where I and I $\times B$ have been computed using the model field	1	Deleted: is
/33	∧ D _{C1} I _V Torces, respectively, where J and J ∧ D <u>nave</u> peen computed using the model neighbors.	1/	Deleted: 5
736	at the location of C1 and the true magnetic fields measured by C2-C4. These, 'model $(J \times B)_{y}$		Deleted: J × B
737	forces' have been computed to provide an illustration of what one would expect the	//	Deleted:
738	'unperturbed' magnetic field of C1 and the associated $(J \times B)_{V}$ force to look like, in the	// /	Deleted: the average B have Deleted: , hereafter referred to as the
i			Deleted: '.
739	absence of any dynamical effects such as current sheet flapping or field line 'kinking'. In	\	Deleted: This has
740	both cases, the model $(J_{\underline{x}}B)_{\underline{y}}$ forces are weakly dawnward, consistent with the		
741	'background curvature' of the magnetic field at this pre-midnight location (see Fig. 7). Fig. $_{\star}6$		Deleted: ure
742	v) suggests that our curlometer approach is generally appropriate, as $\it Q$ mostly remains		
743	below 50% (horizontal dashed line) for the five-minute interval. We note that, unlike in		
744	previous studies which have used the curlometer technique at inter-spacecraft separation		
745	distances of $<<$ 1 R_{E} (e.g. Dunlop et al., 2002; Runov et al., 2003), in our case the Cluster		
746	spacecraft separation is large ($\gtrsim 1~\text{R}_\text{E}\text{)}.$ Therefore, the curlometer is likely to be an		
747	underestimate of the true current at these scale sizes. Critically, however, the spacecraft		
748	configuration is such that the estimate of the direction of the currents should be stable.		
749	Thus, although the volume enclosed by the spacecraft is greater than the scale sizes of the		
750	current sheet flapping and kink, a reliable estimate of the direction of the net $\textbf{\textit{J}} \times \textbf{\textit{B}}$ force		
751	within the enclosed volume may still be obtained.		Formatted: Font color: Auto
752			
753	Two key features of Figure 6 are apparent. Firstly, it appears as though the perturbations to		
754	$(J \times B)_{Y_*}$ are mostly associated with the magnetic field perturbations generally only observed		Deleted: , displayed in Figure 6 vi),
755	by C1. This is made apparent by comparing $(J \times B_{C1})_y$ with $(J \times B_{AVG})_y$, where the		
756	perturbations are much larger in magnitude for $(J \times B_{C1})_v$. We also note that both		
757	$(J_{\times}B_{AVG})_{V}$ and $(J_{\times}B_{C1})_{V}$ are effectively always positive with respect to their model		
758	equivalents. However, $(J \times B_{AVG})_y$ is still mostly net negative whereas $(J \times B_{C1})_y$ is net		
759	positive. This suggests that using B_{C1} , rather than B_{AVG} in calculating $(J \times B)_V$ has overall		
133	positive. This suggests triat using D_{C1} rather trial D_{AVG} in calculating D_A D_A lids overall		

reduced the effects of the larger-scale background field curvature (incorporated by
including the other spacecraft). Second, the magnetic field and flow dynamics evident in Fig.
6 appear to almost always be associated with positive (duskward) enhancements in (∫_×_B) _{yz}
in contrast to the model dawnward sense of $(J_{\underline{x}}B)_{\underline{y}}$. This is particularly evident in the case
of $(J \times B_{C1})_v$, but also generally true in the case of $(J \times B_{AVG})_v$. We therefore suggest that
the dynamic behaviour of $(J_x \times_B)_y$ is simply consistent with the localised kinks and flapping
in the magnetic field that are associated with the transient perturbations to the dusk-dawn
flow observed by C1.

783 784

785 786

787

788

789

790

791

792

793

794

795

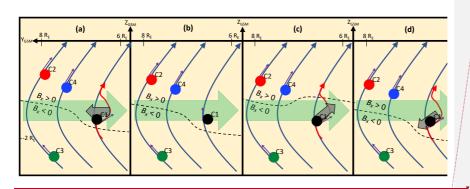
796

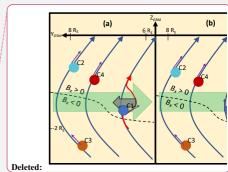
797

798

799 800

801


4.4 Visualization of the observed dynamics


In an effort to visualize these plasma sheet dynamics, we show in Figure 7 a series of sketches that attempt to associate the observed magnetic field perturbations with the observed dusk-dawn convective flows. The panels correspond to the four time-windows indicated on Figure 6 by the highlighted regions labelled a-d. In each panel, we indicate the approximate relative position of the 4 Cluster spacecraft in GSM coordinates, and the appropriate sense of B_y measured by each spacecraft is shown by the purple arrows at each spacecraft location (the Z-component of the field was in fact generally small, and has been exaggerated here for illustrative purposes). We also superimpose nominal plasma sheet field lines (again with an exaggerated extent in Z) that display the sense of B_y implied by the TA15 data presented in Figure 5 (long blue curved arrows). The dashed lines represent the location of the neutral sheet at the end of each time window. This is tilted slightly, as appropriate for IMF $B_y > 0$, but with the end-state of the "flap" of the current sheet implied by the sign of B_x observed by C1. In red is the perturbation to the field implied by the sign of B_y observed by C1.

Deleted: Second, the dawnward flow bursts (reproduced in Fig. 6 vii) tend to occur when $(\boldsymbol{J} \times \boldsymbol{B})_{y}$ is more negative, with the weak duskward flow bursts occurring when $(I \times B)_{ij}$ is less negative. We note that there is not a one-to-one correlation between the ({\it J} \times {\it B})_{\rm Y} and $v_{\perp \rm Y}$ data. This could well be due to the large volume over which $\mathbf{J} \times \mathbf{B}$ is being averaged and we make no attempt to interpret the detailed variations in $(\boldsymbol{J} \times \boldsymbol{B})_y$ implied by these data. However, as this region of space will contain the localized flapping and kink, the calculated $I \times B$ should be influenced by these dynamics and hence still provide an indication of the forces acting within that region. The consistency between the direction of $(\pmb{J}\times\pmb{B})_{\rm Y}$ and $v_{\perp y}$ therefore suggests that the $\pmb{J}\times\pmb{B}$ force associated with the current sheet flapping is exerting some level of control over the direction of the convective flow. We also note that the $(\mathbf{J} \times \mathbf{B})_{v}$ force is effectively always less negative than the model $(J \times B)_v$ force. As can be seen in Figure 6 vi), the model $(\mathbf{J} \times \mathbf{B})_y$ force is acting steadily dawnward, consistent with the duskward location of the spacecraft and suggesting that the curlometer analysis is $\label{eq:curlometer} % \begin{aligned} & = (1 + 1)^{-1} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \\ & = (1 + 1)^{-1} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \\ & = (1 + 1)^{-1} \left(\frac{1}{2} + \frac{1}{2} +$ simply picking up the $(I \times B)_v$ force associated with the 'background curvature' of the magnetic field. Thus, we suggest that the positive deviations of $(J \times B)_y$ from the model $(J \times B)_y$ force are due to the perturbations (flapping and kinking) observed by C1.¶

Formatted: Font color: Auto

Deleted: -

Figure 7: Schematic diagrams of the observed magnetic field perturbations and dusk-dawn convective flows during the time-windows indicated in Fig. 6 by the highlighted regions. The approximate locations of the four Cluster spacecraft relative to one-another in the Y-Z GSM plane are indicated (not to scale) by the colored circles. The curved blue arrows represent magnetic field lines, and the short purple arrow indicates the local sense of B_y at the location of each spacecraft. The dashed black line indicates the current sheet. In panels (a), (b) and (d), the curved red arrow shows the 'kinked' magnetic field line. The long thick green arrow shows the direction of the model ($J \times B$)_Y force associated with the background curvature of the magnetic field, and the small thick gray arrow shows the direction of the dusk-dawn convective flow observed by C1.

In Fig. 7a C1 is located above the current sheet and measured negative B_y . A weakly duskward convective flow was observed at this time (as indicated by the thick gray arrow), consistent with the duskward sense of the $(J \times B)_y$ force, and opposite to the sense of the model $(J \times B)_y$ force associated with the background curvature of the magnetic field. In Fig. 7b, C1 is still above the current sheet but measured $B_y \approx 0$ and no dusk-dawn convective flow. In Fig. 7c C1 is shown below the current sheet, where the background B_y would be positive (see Fig. 5b). C1 instead observed an increasingly negative B_y , which we suggest is associated with the presence of the kink in the field. At the same time, C1 also observed a convective plasma flow with dawnward and slightly upward (+Z) component (thick gray

Deleted: Figure

Deleted: Figure

Deleted: Figure

855 arrow). We therefore suggest that the flow was associated with the upward/dawnward flap of the current sheet, and that the dawnward sense of the flow likely also resulted in the 856 increase in negative B_y seen during the time-window shown in Fig. 6c. The positive Deleted: Figure 857 Deleted: i $(J_{\sim} B_{C1})_{v}$ at this time, whilst inconsistent with the dawnward sense of the flow, is therefore 858 859 consistent with the curvature of the magnetic field associated with the kink. $(J \times B_{AVG})_{V}$ 860 meanwhile, was negative, likely due to incorporating the larger-scale background curvature 861 of the magnetic field observed by the other spacecraft. In Fig. 7d C1 is shown above the Deleted: Figure 862 current sheet, where it observed a weakly negative B_{ν} . In this case, C1 observed a 863 convective plasma flow with duskward and slightly downward (-Z) component. Similarly to Deleted: Figure 864 in <u>Fig.</u> 7a, this flow occurred in concert with a positive enhancement in $(J \times B)_Y$ relative to 865 the model $(I \times B)_v$. This flow would therefore seem to be associated with the downward 866 flap of the current sheet, and its duskward sense could indicate that it is acting to reduce 867 the negative kink in B_{ν} that is apparent over the time-window shown in Fig. 6d. Deleted: Figure 868 869 Whilst we acknowledge a degree of uncertainty in the details of the interpretation 870 presented above of the specific relationship between the flows and the field, it serves to 871 illustrate three observations about this interval of which we can be very certain: 1) The IMF, 872 ionospheric convection, and comparison of the plasma sheet magnetic field observations to 873 the TA15 model field, all lead to the expectation of an IMF $B_y > 0$ large-scale asymmetry in 874 the magnetosphere. 2) The Cluster 1 spacecraft observed convective flow with a dusk-dawn 875 component that was inconsistent with current theories of IMF By-induced dusk-dawn flows 876 associated with magnetotail untwisting. We therefore note that the observations presented 877 here cannot be attributed to the current model of large-scale magnetotail untwisting. 3) Deleted: 878 Magnetic field perturbations that were indicative of a localized current sheet flapping and 879 dusk-dawn kink in the field occurred coincident with the flows. It therefore seems likely that 880 in this case the IMF By-driven asymmetry was insufficient to override the localised dynamics Formatted: Font: Italic Formatted: Font: Italic, Subscript 881 in governing the dusk-dawn component of the flow. **Deleted:** IMF B_y-driven asymmetries are not the only 882 mechanism by which a dusk-dawn component may be introduced into the convective flow, with other dynamical 883 processes also likely to contribute. Deleted: ¶ 884 885

5. Summary

898899900

901

We have presented a case study from 12 October 2006 revealing a dynamic interval of plasma flows and current sheet flapping, observed by the Cluster 1 spacecraft. The key observations presented in this study may be summarised as follows:

902903904

905

906

907

908

909

910

- The OMNI data revealed that the IMF B_y had been positive for several hours prior to our interval of Cluster data, with the exception of three short-lived negative excursions.
- The SuperDARN ionospheric convection observations revealed a large-scale asymmetry consistent with IMF $B_y > 0$.
- C1 observed a changing B_x magnetic field component and associated duskward (v_{⊥y} > 0) flow when in the northern magnetic hemisphere, and dawnward (v_{⊥y} < 0) flow in the southern magnetic hemisphere.

911912913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

Contrary to the results of a number of previous studies in the literature, during this particular interval, the dusk-dawn sense of the convective magnetotail flows $(v_{\perp y})$; and in particular, the dawnward flow observed in the southern hemisphere, does not agree with expectations based on the theoretical understanding of global magnetotail untwisting and the prevailing positive IMF B_y conditions, nor to expectations based on the location of the spacecraft and associated magnetotail flaring. We instead attribute the flows to a localized magnetic field perturbation, or 'kink' in the magnetotail, which appears to have been independent of any large-scale dynamics and may have instead been related to the observed current sheet flapping. We attributed the current sheet flapping to being driven by localized reconnection, itself inferred from the presence of the observed bursty fast earthward flow $(v_{\perp x} \approx 200 \text{ km s}^{-1})$. Analysis using the curlometer technique suggests that the $(J \times B)_y$ force is consistent with the localised kinks and flapping in the magnetic field

that are associated with the transient perturbations to the dusk-dawn flow observed by C1.

Deleted: ,

Deleted: nor to expectations based on the location of the spacecraft and associated magnetotail flaring

Deleted: s

Deleted: have

Deleted: en

Deleted: dynamics

Deleted: instead

Deleted: that the $J \times B$ force associated with the current sheet flapping could have been exerting a level of control over the convective flow responsible for introducing the observed dusk-dawn component.

Although evidence for the large-scale penetration of IMF $B_y > 0$ is apparent, the IMF $B_y > 0$ penetration at the location of C1 appears to have been unable to override the variable dusk-dawn flow associated with the current sheet flapping Further studies by the authors are currently underway to determine if such flows are a frequent occurrence, and to consider, and account for, localized tail dynamics more fully in a statistical analysis of the magnetotail flows.

947 Acknowledgements

940

941

942

943

944

945

946

948 949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969 970

971 972

973

974

975 976

977

978

979

980 981

982

The authors would like to thank the FGM and CIS teams as part of the Cluster mission and acknowledge the Cluster Science Archive (Laakso et al., 2010) as the source of the Cluster data. We also wish to thank the OMNIWeb as the source of the solar wind and IMF data. The authors acknowledge the use of SuperDARN data. SuperDARN is a collection of radars funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, United Kingdom, and United States of America, and we thank the international PI team for providing the data. The authors acknowledge access to the SuperDARN database via BAS data mirror (http://bslsuperdarnc.nerc-bas.ac.uk:8093/docs/) and are grateful for use of the Radar Software Toolkit (RST v4.2 https://zenodo.org/record/1403226#.Xy0u7y3MxTY) with which the raw radar data were processed. We acknowledge the WDC for Geomagnetism, Kyoto, for use of the auroral electrojet indices, which may be obtained from http://wdc.kugi.kyoto-u.ac.jp/aedir/. We are also grateful to Haje Korth for providing the IDL Geopack DLM containing the Tsyganenko magnetic field model routines and coordinate system conversions and wish to thank Nikolai Tsyganenko for useful discussion of his magnetic field models. Finally, we are thankful for the advice of Malcolm Dunlop regarding the applicability of the curlometer technique at large spacecraft separations. This research was undertaken with the support of funding from the following sources: Lancaster University Faculty of Science and Technology studentship (JHL), STFC Consolidated grant no. ST/R000816/1 (NAC, AG), NERC standard grant nos. NE/P001556/1 and NE/T000937/1 (MTW, AG).

References

Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Lühr, H. and Paschmann, G. (1992). Bursty bulk flows in the inner central plasma sheet. *J. Geophys. Res., 97 (A4),* 4027-4039. doi:10.1029/91JA02701

Angelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R., Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W., Feldman W. C. and Gosling, J. T. (1994). Statistical characteristics of bursty bulk flow events. *J. Geophys. Res., 99 (A11)*, 21,257-21,280. doi:10.1029/94JA01263

Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K. -H., Georgescu, E., Glassmeier, K. -H., Harris, J., Musmann, G., Oddy, T. and Scwingenschuh, K.

Deleted: Whilst it is known that variable dusk-dawn flow can occur in conjunction with current sheet flapping, thisAlthough...

Deleted: is apparent

Deleted:

Deleted: This seems to have case study has provided direct evidence that flapping can locally override the expected IMF B_y control of dusk-dawn magnetotail flow, in spite of clear global penetration of IMF B_y > 0; consequently, resultinged in the production of localized flows that do not agree with the expected direction for globalbased on the location and magnetotail untwisting considerations discussed above.

Deleted: such flows are

(2001). The Cluster magnetic field investigation: Overview of in-flight performance and

996

997 998	initial results. Ann. Geophys., 19, 1207-1217. doi: 10.5194/angeo-19-1207-2001
999 1000 1001	Baumjohann, W., Paschmann, G. and Cattell, C. A. (1989). Average Properties in the Central Plasma Sheet. <i>Journal of Geophysical Research, 94 (A6),</i> 6597-6606. doi: 10.1029/JA094iA06p06597
1001	10.1029/JA094iA00p00397
1003 1004 1005 1006	Browett, S. D., Fear, R. C., Grocott, A., and Milan, S. E. (2017). Timescales for the penetration of IMF B_{γ} into the Earth's magnetotail. <i>J. Geophys. Res.: Space Physics, 122 (1),</i> 579-593. doi:10.1002/2016JA023198
1007 1008 1009 1010 1011	Cao, J. B., Ma, Y. D., Parks, G., Rème, H., Dandouras, I., Nakamura, R., Zhang, T. L., Zong, Q., Lucek, E., Carr, C. M., Liu, Z. X. and Zhou, G. C. (2006). Joint observations by Cluster satellites of bursty bulk flows in the magnetotail. <i>J. Geophys. Res., 111 (A4),</i> A04206. doi:10.1029/2005JA011322
1012 1013 1014 1015	Case, N. A., Grocott, A., Haaland, S., Martin, C. J., and Nagai, T. (2018). Response of the Earth's Neutral Sheet to Reversals in the IMF B _y component. <i>J. Geophys. Res., 123 (10),</i> 8206-8218. doi:10.1029/2018JA025712
1013 1016 1017 1018 1019	Case, N. A. and Wild, J. (2012). A statistical comparison of solar wind propagation delays derived from multispacecraft techniques. <i>J. Geophys Res., 117 (A2)</i> , A02101, doi:10.1029/2011JA016946.
1020 1021 1022 1023 1024 1025 1026	Chisham G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman, T. K., Dyson, P. L., Greenwald, R. A., Kikuchi, T., Pinnock, M., Rash, J. P. S., Sato, N., Sofko, G. J., Villain, JP. and Walker, A. D. M. et al. (2007). A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. <i>Surveys in Geophysics 28</i> , 33-109. doi:10.1007/s10712-007-9017-8
1027 1028 1029	Cowley, S. W. H. (1981). Magnetospheric asymmetries associated with the y-component of the IMF. Planet Space Sci, <i>29</i> (1), 79-96. doi:10.1016/0032-0633(81)90141-0
1030 1031 1032	Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. <i>Phys. Rev. Lett.</i> , 6, 47-48. doi:10.1103/PhysRevLett.6.47
1033 1034 1035 1036	Dunlop, M. W., Southwood, D. J., Glassmeier, KH., and Neubauer, F. M. (1988). Analysis of multipoint magnetometer data. <i>Advances in Space Research, 8 (9-10),</i> 273-277. doi:10.1016/0273-1177(88)90141-X
1037 1038 1039 1040	Dunlop, M. W., Balogh, A., Glassmeier, KH. and Robert, P. (2002). Four-point Cluster application of magnetic field analysis tools: The Curlometer. <i>J. Geophys. Res., 107 (A11)</i> . doi:10.1029/2001JA005088
1041 1042	Escoubet, C. P., Fehringer, M. and Goldstein, M. (2001). The Cluster Mission. <i>Ann. Geophys.</i> , 19, 1197 – 1200. doi:10.5194/angeo-19-1197-2001

1043	
1044	Fairfield, D. H. (1979). On the Average Configuration Of The Geomagnetic Tail. J. Geophys.
1045	Res., 84 (A5), 1950-1958. doi:10.1029/JA084iA05p01950
1046	,- (-,,,
1047	Frühauff, D. and Glassmeier, KH. (2016). Statistical analysis of magnetotail fast flows and
1048	related magnetic disturbances. <i>Ann. Geophys., 34,</i> 399-409. doi:10.5194/angeo-34-399-
1049	2016
	2010
1050	Const. A (2017) Time Providence (Dec.) Del Assemblés de la Terration
1051	Grocott, A. (2017). Time Dependence of Dawn-Dusk Asymmetries in the Terrestrial
1052	Ionospheric Convection Pattern. In: Haaland, S. et al. (2017), Dawn-Dusk Asymmetries in
1053	Planetary Plasma Environments, John Wiley and Sons, Inc., 107-123
1054	
1055	Grocott, A., Yeoman, T. K., Nakamura, R., Cowley, S. W. H, Frey, H. U., Rème, H. and Klecker,
1056	B. J. (2004a). Multi-instrument observations of the ionospheric counterpart of a bursty bulk
1057	flow in the near-Earth plasma sheet. Ann. Geophys., 22, 1061-1075, 1432-0576/ag/2004-22-
1058	1061.
1059	
1060	Grocott, A., Yeoman, T. K., Cowley, S. W. H, and Rème, H. (2004b). Multi-instrument
1061	observations of bursty bulk flows and their ionospheric counterparts. <i>Proc. Seventh Internat</i> .
1062	Conf. on Substorms, UDK-52-854, FMI, Helsinki, Finland, 107-110.
1063	
1064	Grocott, A., Badman, S. V., Cowley, S. W. H, and Cripps (2004c). The influence of the IMF B _v
1065	on the nature of the nightside high-latitude ionospheric flow during intervals of positive IMF
1066	B _z . Ann. Geophys., 22, 1755-1764, doi:10.5194/angeo-22-1755-2004.
1067	bz. Allil. Geophys., 22, 1755-1764, doi.10.5154/aligeo-22-1755-2004.
1067	Grocott, A., Yeoman, T. K., Milan, S. E. and Cowley, S. W. H. (2005), Interhemispheric
	observations of the ionospheric signature of tail reconnection during IMF-northward non-
1069	
1070	substorm intervals, <i>Ann. Geophys.</i> , 23, 1763–1770. doi:10.5194/angeo-23-1763-2005.
1071	Coord A Vocas TK Miles C.F. App. O. For Hill I cole I Noley on D
1072	Grocott, A., Yeoman, T. K., Milan, S. E., Amm. O., Frey, H. U., Juusola, L., Nakamura, R.,
1073	Owen, C. J., Rème, H. and Takada, T. (2007). Multi-scale observations of magnetotail flux
1074	transport during IMF-northward non-substorm intervals. <i>Ann. Geophys., 25,</i> 1709-1720.
1075	doi:10.5194/angeo-25-1709-2007
1076	
1077	Grocott, A., Milan, S. E. and Yeoman, T. K. (2008). Interplanetary magnetic field control of
1078	fast azimuthal flows in the nightside high-latitude ionosphere, Geophys. Res. Lett., 35,
1079	L08102, doi:10.1029/2008GL033545.
1080	
1081	Haaland, S., Runov, A. and Forsyth, C. (2017). Dawn-Dusk Asymmetries in Planetary Plasma
1082	Environments, Geophysical Monograph 230, First Edition. American Geophysical Union.
1083	Published 2017 by John Wiley & Sons, Inc.
1084	, , ,
1085	Karlsson, T., Hamrin, M., Nilsson, H., Kullen, A., and Pitkänen, T. (2015). Magnetic forces
1086	associated with bursty bulk flows in the Earth's magnetotail. <i>Geophys. Res. Lett.</i> , 42 (9),
1087	3122-3128. doi:10.1002/2015GL063999
1087	31LL 31L0. G01.10.1002/2013GL003333
1000	

1	1089	Kiehas, S. A., Runov, A., Angelopoulos, V., Hietala, H. and Korovinksiy, D. (2018). Magnetotail	
	1090	Fast Flow Occurrence Rate and Dawn-Dusk Asymmetry at X _{GSM} ~ -60 R _E . J. Geophys. Res.:	
1	1091	Space Physics, 123 (3), 1767 – 1778. doi:10.1002/2017JA024776	
	1092		
	1093	King, J. H., and Papitashvili, N. E. (2005). Solar wind spatial scales in and comparisons of	
	1094	hourly Wind and ACE plasma and magnetic field data. <i>J. Geophys. Res.</i> , 110, A02104.	
	1095	doi:10.1029/2004JA010649	
	1096	doi:10.1025/20043/1010045	
	1097	Kissinger, J., McPherron, R. L., Hsu, TS. and Angelopoulos, V. (2012). Diversion of plasma	
	1098	due to high pressure in the inner magnetosphere during steady magnetospheric convection.	
	1099	J. Geophys. Res., 117, A05206. doi:10.1029/2012JA017579	Formatted: Font: Not Italic
	1100	J. Ocophys. Ncs., 111, poszon. doi.10.1023/20123A017373	(Total Total
	1101	Khurana, K. K., Walker, R. J., and Ogino, T. (1996). Magnetospheric convection in the	
	101	presence of interplanetary magnetic field By: A conceptual model and simulations. <i>J.</i>	Deleted: ,
	1102	Geophys. Res., 101 (A3), 4907–4916. doi:10.1029/95JA03673	Deleteu.,
	1103	Geophys. Nes., 101 (A3), 4307–4310. doi:10.1023/333A03073	
	1104	Kubyshkina, D. I., Sormakov, D. A., Sergeev, V. A., Semenov, V. S., Erkaev, N. V., Kubyshkin, I.	
	1105	V., Ganushkina, N. Yu. And Dubyagin, S. V. (2014). How to distinguish between kink and	
	1100	, , , , , , , , , , , , , , , , , , , ,	
	1107	sausage modes in flapping oscillations? <i>J. Geophys. Res., 119,</i> 3,002-3,015.	
		doi:10.1002/2013JA019477.	
	1109	Leakes II C Dawy C McCaffrey D Harmont A L Allan CC Harrisy CD Feedubat C	
	1110	Laakso, H., C. Perry, S. McCaffrey, D. Herment, A.J. Allen, C.C. Harvey, C.P. Escoubet, C.	
	1111	Gruenberger, M.G.G.T. Taylor, and R. Turner (2010), Cluster Active Archive: Overview, 3-37,	
	1112	The Cluster Active Archive, Astrophysics and Space Science Proceedings, H. Laakso et al.	
	1113	(eds.), Springer.	
	1114	Ladward M. (1003) Madelling high latitude in control for him a control	
	1115	Lockwood, M. (1993), Modelling high-latitude ionosphere for time-varying plasma	(D.1.)
	1116	convection LEE Proceedings-H, Vol. 140. No. 2. doi:10.1049/ip-h-2.1993.0015	Deleted: ,
	1117	Malara II V. Zalami I. M. Danara V. V. Dahmilariida A. A. and Dunara A. V. (2007)	
	1118 1119	Malova, H. V., Zelenyi, L. M., Popov, V. Y., Petrukovich, A. A. and Runov, A. V. (2007).	
		Asymmetric thin current sheets in the Earth's magnetotail. <i>Geophys. Res. Lett., 34 (16),</i>	
	1120	L16108. doi:10.1029/2007GL030011	
	1121 1122	Maphaman B. I. Hay T. C. Wissinson J. Chy. V. and Appalancels V. (2014)	
		McPherron, R. L., Hsu, TS., Kissinger, J., Chu, X., and Angelopoulos, V., (2011).	
	1123	Characteristics of plasma flows at the inner edge of the plasma sheet. <i>J. Geophys. Res., 116</i>	
	1124	(A5), A00133. doi:10.1029/2010JA015923	
	1125	Nalasawa D. Dawaiahara W. Washan D. Dandarawa V. Dalash A. Dàrra H. Danwad I.	
	1126	Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Rème, H., Bosqued, J.	
	1127	M., Dandouras, I., Sauvaud, J. A., Glassmeier, KH., Kistler, L., Mouikis, C., Zhang, T. L.,	
	1128	Eichelberger, H. and Runov, A. (2002). Motion of the dipolarization front during a flow burst	
	1129	event observed by Cluster. Geophys. Res. Lett., 29 (20), 1942. doi:/10.1029/2002GL015763	
	1130	Nakamura B. Batina A. Baumiahann W. Valusark M. Erkasu M. Klaskar B. Lucch E. A.	
	1131	Nakamura, R., Retinò, A., Baumjohann, W., Volwerk, M., Erkaev, N., Klecker, B., Lucek, E. A.,	
	1132	Dandouras, I., André, M. and Khotyainstev, Y. (2009). Evolution of dipolarization in the near-	
	1133	Earth current sheet induced by Earthward rapid flux transport. <i>Ann. Geophys.</i> , 27, 1743-	
	1134	1754. doi:10.5194/angeo-27-1743-2009	
	1135		

Ness, N. F. (1965). The Earth's Magnetic Tail. J. Geophys. Res., 70 (13), 2989–3005.

1138

1139

doi:10.1029/JZ070i013p02989

1140 1141 Newell, P. T., Sotirelis, T., Liou, K., Meng, C. -I. and Rich, F. J. (2007). A nearly universal solar 1142 wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. 1143 Geophys. Res., 112 (A1), A01206. doi: 10.1029/2006JA012025 1144 1145 Nishitani, N., Ruohoniemi, J. M., Lester, M., Baker, J. B. H., Koustov, A. V., Shepherd, S. G., 1146 Chisham, G., Hori, T., Thomas, E. G., Makarevich, R. A., Marchaudon, A., Ponomarenko, P., 1147 Wild, J. A., Milan, S. E., Bristow, W. A., Devlin, J., Miller, E., Greenwald, R. A., Ogawa, T. and 1148 Kikiuchi, T. (2019). Review of the accomplishments of mid-latitude Super Dual Auroral Radar 1149 Network (SuperDARN) HF radars. Progress in Earth and Planetary Science, 6:27. 1150 doi:10.1186/s40645-019-0270-5 1151 1152 Ohma, A., Østgaard, N., Reistad, J. P., Tenfjord, P., Laundal, K. M., Moretto Jørgensen, T., 1153 Haaland, S. E., Krcelic, P. and Milan, S. (2019). Observations of Asymmetric Lobe Convection 1154 for Weak and Strong Tail Activity. J. Geophys. Res.: Space Physics, 124 (12). 1155 doi:10.1029/2019JA026773 1156 1157 Pettigrew, E. D., Shepherd, S. G. and Ruohoniemi, J. M. (2010). Climatological patterns of 1158 high-latitude convection in the Northern and Southern hemispheres: Dipole tilt 1159 dependencies and interhemispheric comparisons. J. Geophys., Res., 115, doi: 1160 10.1029/2009JA014956. 1161 1162 Petrukovich, A. A. (2011). Origins of plasma sheet B_v. J. Geophys. Res., 116 (A7), A07217. 1163 doi:10.1029/2010JA016386 1164 1165 Petrukovich, A. A., Baumjohann, W., Nakamura, R., Schödel, R., and Mukai, T. (2001). Are 1166 earthward bursty bulk flows convective or field-aligned? J. Geophys. Res., 106 (A10), 21,211-1167 21,215. doi:10.1029/2001JA900019 1168 1169 Petrukovich, A. A., Baumjohann, W., Nakamura, R., Runov, A., and Balogh, A. (2005). Cluster 1170 vision of the magnetotail current sheet on a macroscale. J. Geophys. Res., 110 (A6), A06204. doi:10.1029/2004JA010825 1171 1172 1173 Pitkänen, T., Hamrin, M., Norqvist, P., Karlsson, T., and Nilsson, H. (2013). IMF dependence 1174 of the azimuthal direction of earthward magnetotail fast flows. Geophys. Res. Lett., 40 (21), 1175 5598-5604. doi:10.1002/2013GL058136 1176 1177 Pitkänen, T., Hamrin, M., Norqvist, P., Karlsson, T., Nilsson, H., Kullen, A., Imber, S. M. and 1178 Milan, S. E. (2015). Azimuthal velocity shear within an earthward fast flow: further evidence 1179 for magnetotail untwisting? Ann. Geophys., 33, 245-255. doi:10.5194/angeo-33-245-2015 1180 1181 Pitkänen, T., Hamrin, M., Karlsson, T., Nilsson, H., and Kullen, A. (2017). On IMF B_v-Induced 1182 Dawn-Dusk Asymmetries in Earthward Convective Fast Flows. In: Haaland, S. et al. (2017), 1183 Dawn-Dusk Asymmetries in Planetary Plasma Environments, John Wiley and Sons, Inc., 107-1184 123.

Pitkänen, T., Kullen, A., Laundal, K. M., Tenfjord, P., Shi, Q. Q. Park. J. -S., Hamrin, M., De

Spiegeleer, A., Chong, G. S. and Tian, A. M. (2019). IMF B_y Influence on Magnetospheric

1185 1186

1187

1188	Convection in Earth's Magnetotail Plasma Sheet. <i>Geophys. Res. Lett.</i> , 46 (21), 11,698-11,708.
1189	doi:10.1029/2019GL084190
1190	
1191	Reistad, J. P., Østgaard, N., Tenfjord, P., Laundal, K. M., Snekvik, K., Haaland, S., Milan, S. E.,
1192	Oksavik, K., Frey, H. U. and Grocott, A. (2016). Dynamic effects of restoring footprint
1193	symmetry on closed magnetic field lines. J. Geophys. Res.: Space Physics, 121 (5),
1194	015JA022058. doi:10.1002/2015JA022058
1195	
1196	
1197	Reistad, J. P., Østgaard, N., Laundal, K. M., Ohma, A., Snekvik, K., Tenfjord, P., Grocott, A.,
1198	Oksavik, K., Milan, S. E. and Haaland, S. (2018). Observations of asymmetries in ionospheric
1199	return flow during different levels of geomagnetic activity, J. Geophys. Res., 123.
1200	doi:10.1029/2017JA025051
1201	
1202	
1203	Rème, H., Bosqued, J. M., Sauvaud, J. A., Cros, A., Dandouras, J., Aoustin, C., Bouyssou, J.,
1204	Camus, Th., Cuvilo, J., Martz, C., Médale, J. L., Perrier, H., Romefort, D., Rouzaud, J., d'Uston,
1205	C., Möbius, E., Crocker, K., Granoff, M., Kistler, L. M., Popecki, M., Hovestadt, D., Klecker, B.,
1206	Paschmann, G., Scholer, M., Carlson, C. W., Curtis, D. W., Lin, R. P., McFadden, J. P.,
1207	Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Belluci, G., Bruno, R.,
1208	Chionchio, G., Di Lellis, A., Shelley, E. G., Ghielmetti, A. G., Lennartsson, W., Korth, A.,
1209	Rosenbauer, H., Lundin, R., Olsen, S., Parks, G. K., McCarthy, M. and Balsiger, H. (1997). The
1210	Cluster Ion Spectrometry (CIS) Experiment. Space Sci. Rev., 79, 303-350. doi:10.1007/978-
1211	94-011-5666-0_12
1212	
1213	Rong, Z. J., Barabash, S., Stenberg, G., Futaana, Y., Zhang, T. L., Wan, W. X., Wei, Y. and
1214	Wang, XD. (2015). Technique for diagnosing the flapping motion of magnetotail current
1215	sheets based on single-point magnetic field analysis. J. Geophys. Res.: Space Physics, 120 (5),
1216	3462-3474. doi:10.1002/2014JA020973
1217	
1218	Runov, A. Nakamura, R., Baumjohann, W., Zhang, T. L., Volwerk, M., Eichelberger, HU. and
1219	Balogh, A. (2003). Cluster observations of a bifurcated current sheet. <i>Geophys. Res. Lett., 30</i>
1220	(2), 1036. doi:10.1029/2002GL016136
1221	
1222	Runov, A., Angelopoulos, V., Sergeev, V. A., Glassmeier, KH., Auster, U., McFadden, J.,
1223	Larson, D. and Mann, I. (2009). Global properties of magnetotail current sheet flapping:
1224	THEMIS perspectives. <i>Ann. Geophys., 27,</i> 319-328. doi:10.5194/angeo-27-319-2009
1225	
1226	Ruohoniemi, J. M. and Baker, K. B. (1998). Large-scale imaging of high-latitude convection
1227	with Super Dual Auroral Radar Network HF radar observations. J. Geophys. Res., 103 (A9),
1228	20,797-20,811. doi:10.1029/98JA01288
1229	

1230 Ruohoniemi, J. M. and Greenwald, R. A. (1996). Statistical patterns of high-latitude 1231 convection obtained from Goose Bay HF radar observations. J. Geophys. Res., 101 (A10), 1232 21,743-21,763. doi:10.1029/96JA01584 1233 1234 Sergeev, V. A., Angelopoulos, V., Gosling, J. T., Cattell, C. A., and Russell, C. T. (1996). 1235 Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. 1236 Geophys. Res., 101 (A5), 10,817 - 10,826. doi:10.1029/96JA00460 1237 1238 Sonnerup, B. U. Ö, and Cahill Jr, L. J. (1967). Magnetopause structure and attitude from 1239 Explorer 12 observations. J. Geophys. Res., 72 (1), 171-183. 1240 doi:10.1029/JZ072i001p00171 1241 1242 Sonnerup, B. U. Ö and Scheible, M. (1998). Minimum and Maximum Variance Analysis. In: 1243 Paschmann, G. and Daly, W. (1998), Analysis Methods for Multi-Spacecraft Data, pp 185-1244 220, ESA Publications Division, Noordwijk, Netherlands. 1245 1246 Tenfjord, P., Østgaard, N., Snekvik, K., Laundal, K. M., Reistad, J. P., Haaland, S., and Milan, S. 1247 E. (2015). How the IMF B_v induces a B_v component in the closed magnetosphere and how it 1248 leads to asymmetric currents and convection patterns in the two hemispheres. J. Geophys. 1249 Res.: Space Physics, 120 (11), 9368-9384. doi:10.1002/2015JA021579 1250 1251 Tenfjord, P., Østgaard, N., Strangeway, R., Haaland, S., Snekvik, K., Laundal, K. M., Reistad, J. 1252 P. and Milan, S. E. (2017). Magnetospheric response and reconfiguration times following 1253 IMF By reversals. J. Geophys. Res.: Space Physics, 122 (1), 417-431. 1254 doi:10.1002/2016JA023018 1255 1256 Thomas, E. G. and Shepherd, S. G. (2018). Statistical Patterns of Ionospheric Convection 1257 Derived From Mid-Latitude, High-Latitude and Polar SuperDARN HF Observations. J. 1258 Geophys. Res.: Space Physics, 123 (4), 3196-3216. doi:10.1002/2018JA025280 1259 1260 Tsyganenko, N. A. and Andreeva, V. A. (2015). A forecasting model of the magnetosphere 1261 driven by an optimal solar wind coupling function. J. Geophys. Res., 120 (10), 8401-8425. doi:10.1002/2015JA021641 1262 1263 1264 Volwerk, M., Zhang, T. L., Glassmeier, K.-H., Runov, A., Baumjohann, W., Balogh, A., Rème, 1265 H., Klecker, B. and Carr, C. (2008). Study of waves in the magnetotail region with cluster and 1266 DSP. Advances in Space Research, 41 (10), 1593-1597. doi:10.1016/j.asr.2007.04.005. 1267 1268 Wei, X. H., Cai, C. L., Cao, J. B., Rème, H., Dandouras, I., and Parks, G. K. (2015). Flapping 1269 motions of the magnetotail current sheet excited by nonadiabatic ions. Geophys. Res. Lett., 1270 42, 4731-4735. doi:10.1002/2015GL064459 1271 1272 Wei, Y. Y., Huang, S. Y., Rong, Z. J., Yuan, Z. G., Jiang, K., Deng, X. H., Zhou, M., Fu, H. S., Yu, 1273 X. D., Xu, S. B., He, L. H. and Deng, D. (2019). Observations of Short-period Current Sheet Flapping Events in the Earth's Magnetotail. The Astrophysical Journal Letters, 874, 7pp. 1274 1275 doi:10.3847/2041-8213/ab0f28/pdf.

1276

1277	Wu, M., Lu, Q., Volwerk, M., Vörös, Z., Ma, X., and Wang, S. (2016). Current sheet flapping
1278	motions in the tailward flow of magnetic reconnection. J. Geophys. Res., 121 (8), 7817-7827.
1279	doi:10.1002/2016JA022819
1280	
1281	Zhang, L. Q., Baumjohann, W., Wang, C., Dai, L., and Tang, B. B. (2016). Bursty bulk flows at
1282	different magnetospheric activity levels: Dependence of IMF conditions. J. Geophys. Res.,
1283	<i>121 (9)</i> , 8773-8789. doi:10.1002/2016JA022397
1284	
1285	